Convert Siemens to Volt and more • 68 conversions
0
The siemens (symbol: S) is the SI unit of electrical conductance, defined as the reciprocal of resistance in ohms. One siemens is equivalent to one ampere per volt, which can be expressed as S = A/V. This unit is used to measure how easily electricity can flow through a material or circuit. The siemens is a derived unit, belonging to the International System of Units (SI), and was adopted in 1960 during the 11th General Conference on Weights and Measures. It is named after the German inventor and electrical engineer Werner von Siemens, who made significant contributions to the development of electrical engineering.
Today, the siemens is widely utilized across various industries for measuring electrical conductance. It is an essential unit in electrical engineering, especially in the design and analysis of circuits. The telecommunications industry employs siemens to assess the conductance of transmission lines and cables, ensuring efficient signal transmission. In the field of electronics, components such as resistors, capacitors, and inductors are evaluated using siemens to determine their behavior in circuits. Furthermore, in the realm of materials science, researchers use this unit to characterize the electrical properties of materials, aiding in the development of conductive materials for various applications. Countries worldwide, including the USA, Germany, and Japan, utilize the siemens in both educational and professional settings, reinforcing its importance in global electrical engineering practices.
The symbol for siemens, 'S', is a tribute to the inventor Werner von Siemens.
The volt (symbol: V) is the derived SI unit of electric potential, electric potential difference (voltage), and electromotive force. One volt is defined as the potential difference that would move one coulomb of electric charge through a conductor with a resistance of one ohm when a constant current of one ampere flows. This definition derives directly from Ohm's Law, which states that voltage (V) equals current (I) multiplied by resistance (R). Therefore, the volt can also be expressed in fundamental SI base units as V = W/A, where W is watts, A is amperes, and the watt itself is defined as one joule per second. This relates voltage to energy transfer within electrical systems, making it a crucial concept in both theoretical and applied electromagnetism.
The volt is widely used in various industries including electronics, telecommunications, and electrical engineering. In electronics, it is fundamental for specifying the voltage levels of components such as batteries, resistors, capacitors, and integrated circuits. In telecommunications, voltages are crucial for signal transmission and processing, influencing the design of devices such as amplifiers and modulators. The volt is also significant in power generation and distribution, where it determines the operational voltage levels of machinery and equipment, impacting efficiency and safety. Countries around the world adopt the volt as the standard measurement of electric potential, with many using DC (direct current) and AC (alternating current) systems that require precise voltage levels for optimal performance. With the rise of renewable energy technologies, voltage management has become increasingly important in ensuring the stability and efficiency of solar panels, wind turbines, and electric vehicles.
The volt was named after Alessandro Volta, who created the first true battery.
= × 1.00000To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.
💡 Pro Tip: For the reverse conversion ( → ), divide by the conversion factor instead of multiplying.
electric • SI Unit
The siemens (symbol: S) is the SI unit of electrical conductance, defined as the reciprocal of resistance in ohms. One siemens is equivalent to one ampere per volt, which can be expressed as S = A/V. This unit is used to measure how easily electricity can flow through a material or circuit. The siemens is a derived unit, belonging to the International System of Units (SI), and was adopted in 1960 during the 11th General Conference on Weights and Measures. It is named after the German inventor and electrical engineer Werner von Siemens, who made significant contributions to the development of electrical engineering.
The concept of electrical conductance dates back to the early experiments with electricity, particularly in the 19th century. The formal definition and measurement of conductance emerged as researchers like Georg Simon Ohm established the relationship between voltage, current, and resistance. Ohm's Law (V = IR) laid the groundwork for understanding electrical circuits. The need for a standardized unit came as electrical systems became more complex, and the importance of conductance in circuit design and analysis increased. The siemens was introduced as a unit of conductance to formalize this aspect of electrical engineering.
Etymology: The term 'siemens' is derived from the name of Werner von Siemens, a prominent figure in the field of electrical engineering, reflecting his significant contributions to the development of electrical systems and technology.
Today, the siemens is widely utilized across various industries for measuring electrical conductance. It is an essential unit in electrical engineering, especially in the design and analysis of circuits. The telecommunications industry employs siemens to assess the conductance of transmission lines and cables, ensuring efficient signal transmission. In the field of electronics, components such as resistors, capacitors, and inductors are evaluated using siemens to determine their behavior in circuits. Furthermore, in the realm of materials science, researchers use this unit to characterize the electrical properties of materials, aiding in the development of conductive materials for various applications. Countries worldwide, including the USA, Germany, and Japan, utilize the siemens in both educational and professional settings, reinforcing its importance in global electrical engineering practices.
electric • SI Unit
The volt (symbol: V) is the derived SI unit of electric potential, electric potential difference (voltage), and electromotive force. One volt is defined as the potential difference that would move one coulomb of electric charge through a conductor with a resistance of one ohm when a constant current of one ampere flows. This definition derives directly from Ohm's Law, which states that voltage (V) equals current (I) multiplied by resistance (R). Therefore, the volt can also be expressed in fundamental SI base units as V = W/A, where W is watts, A is amperes, and the watt itself is defined as one joule per second. This relates voltage to energy transfer within electrical systems, making it a crucial concept in both theoretical and applied electromagnetism.
The volt is named after the Italian physicist Alessandro Volta, who is credited with the invention of the voltaic pile, the first chemical battery, in 1800. This device was revolutionary, as it provided a steady source of electric current, enabling the study of electrical phenomena. Volta's pioneering work in electricity laid the groundwork for future developments in electrochemistry and electrical engineering, leading to the formal recognition of electric potential as a measurable and essential quantity in physics. The term 'volt' was officially adopted as the unit of measurement in 1881 at the International Electrical Congress held in Paris, establishing a standard for the scientific community and industry alike.
Etymology: The term 'volt' is derived from the name of Alessandro Volta, honoring his contributions to the field of electricity and electrochemistry.
The volt is widely used in various industries including electronics, telecommunications, and electrical engineering. In electronics, it is fundamental for specifying the voltage levels of components such as batteries, resistors, capacitors, and integrated circuits. In telecommunications, voltages are crucial for signal transmission and processing, influencing the design of devices such as amplifiers and modulators. The volt is also significant in power generation and distribution, where it determines the operational voltage levels of machinery and equipment, impacting efficiency and safety. Countries around the world adopt the volt as the standard measurement of electric potential, with many using DC (direct current) and AC (alternating current) systems that require precise voltage levels for optimal performance. With the rise of renewable energy technologies, voltage management has become increasingly important in ensuring the stability and efficiency of solar panels, wind turbines, and electric vehicles.
Explore more electric conversions for your calculations.
To convert to , multiply your value by 1. For example, 10 equals 10 .
The formula is: = × 1. This conversion factor is based on international standards.
Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.
Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.