MetricConv logo
Home/Converters/Electric

Conductanceabmho Converter

Convert Conductanceabmho to Siemens and more • 68 conversions

Result

0

1 0
Conversion Formula
1 = ---
Quick Reference
1 = 1
10 = 10
50 = 50
100 = 100
500 = 500
1000 = 1000

Unit Explanations

ConductanceS

Source Unit

Conductance is the measure of how easily electricity flows through a material, quantified as the inverse of resistance. Measured in siemens (S), it is defined quantitatively as the ratio of the current (I) in amperes to the voltage (V) in volts across a conductor. The formula for conductance is G = I/V, where G is conductance, I is the current, and V is the voltage. Conductance is an important parameter in electrical engineering and physics, serving as a critical factor in circuit design and analysis.

G = I/V

Current Use

Conductance is widely used in various industries such as electronics, telecommunications, and power engineering. It plays a crucial role in the design of electrical circuits and devices, including resistors and capacitors. Conductance is also essential in evaluating the performance of electrical components and systems, ensuring efficient energy transfer and minimal losses. Understanding conductance is vital for engineers and technicians working with electrical systems.

Fun Fact

The siemens (S) unit of conductance is named after the German inventor Ernst Werner von Siemens.

SiemensS

Target Unit

The siemens (symbol: S) is the SI unit of electrical conductance, defined as the reciprocal of resistance in ohms. One siemens is equivalent to one ampere per volt, which can be expressed as S = A/V. This unit is used to measure how easily electricity can flow through a material or circuit. The siemens is a derived unit, belonging to the International System of Units (SI), and was adopted in 1960 during the 11th General Conference on Weights and Measures. It is named after the German inventor and electrical engineer Werner von Siemens, who made significant contributions to the development of electrical engineering.

S = A/V

Current Use

Today, the siemens is widely utilized across various industries for measuring electrical conductance. It is an essential unit in electrical engineering, especially in the design and analysis of circuits. The telecommunications industry employs siemens to assess the conductance of transmission lines and cables, ensuring efficient signal transmission. In the field of electronics, components such as resistors, capacitors, and inductors are evaluated using siemens to determine their behavior in circuits. Furthermore, in the realm of materials science, researchers use this unit to characterize the electrical properties of materials, aiding in the development of conductive materials for various applications. Countries worldwide, including the USA, Germany, and Japan, utilize the siemens in both educational and professional settings, reinforcing its importance in global electrical engineering practices.

Fun Fact

The symbol for siemens, 'S', is a tribute to the inventor Werner von Siemens.

Decimals:
Scientific:OFF

Result

0

1
0
Conversion Formula
1 = ...
1→1
10→10
100→100
1000→1000

📐Conversion Formula

= × 1.00000

How to Convert

To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.

Quick Examples

1
=
1.000
10
=
10.00
100
=
100.0

💡 Pro Tip: For the reverse conversion (), divide by the conversion factor instead of multiplying.

S

Conductance

electricSI Unit

Definition

Conductance is the measure of how easily electricity flows through a material, quantified as the inverse of resistance. Measured in siemens (S), it is defined quantitatively as the ratio of the current (I) in amperes to the voltage (V) in volts across a conductor. The formula for conductance is G = I/V, where G is conductance, I is the current, and V is the voltage. Conductance is an important parameter in electrical engineering and physics, serving as a critical factor in circuit design and analysis.

History & Origin

The concept of conductance emerged in the early studies of electricity, where scientists began to understand the relationship between voltage, current, and resistance. The term 'conductance' was formally introduced in the late 19th century as the science of electromagnetism advanced. It was recognized that materials varied significantly in their ability to conduct electricity, leading to further exploration into the properties of conductors and insulators.

Etymology: The term 'conductance' is derived from the Latin root 'conducere,' meaning 'to lead together,' combined with the suffix '-ance,' which indicates a quality or state.

1883: The term conductance is first ...1959: The International System of Un...

Current Use

Conductance is widely used in various industries such as electronics, telecommunications, and power engineering. It plays a crucial role in the design of electrical circuits and devices, including resistors and capacitors. Conductance is also essential in evaluating the performance of electrical components and systems, ensuring efficient energy transfer and minimal losses. Understanding conductance is vital for engineers and technicians working with electrical systems.

ElectronicsTelecommunicationsPower Engineering

💡 Fun Facts

  • The siemens (S) unit of conductance is named after the German inventor Ernst Werner von Siemens.
  • Conductance is often used in conjunction with the concept of admittance, which is the measure of how easily a circuit allows alternating current to flow.
  • Conductance values can vary widely, from extremely low values in insulators to very high values in superconductors.

📏 Real-World Examples

10 S
A copper wire has a conductance of 10 S, allowing a current of 10 A when a voltage of 1 V is applied.
0.01 S
A 100-ohm resistor has a conductance of 0.01 S, allowing a current of 0.1 A when 1 V is applied.
5 S
A water solution with high ion concentration exhibits a conductance of 5 S, enabling high current flow.
23 S
An aluminum conductor has a conductance of 23 S, permitting a current of 23 A at 1 V.
0.001 S
A silicon semiconductor has a conductance of 0.001 S, indicating low current flow at low voltage.

🔗 Related Units

Resistance (Conductance is the reciprocal of resistance, G = 1/R.)Current (Conductance relates to current and voltage, G = I/V.)Voltage (Higher voltage across a conductor increases the current, affecting conductance.)Admittance (Admittance is the complex counterpart of conductance in AC circuits.)
S

Siemens

electricSI Unit

Definition

The siemens (symbol: S) is the SI unit of electrical conductance, defined as the reciprocal of resistance in ohms. One siemens is equivalent to one ampere per volt, which can be expressed as S = A/V. This unit is used to measure how easily electricity can flow through a material or circuit. The siemens is a derived unit, belonging to the International System of Units (SI), and was adopted in 1960 during the 11th General Conference on Weights and Measures. It is named after the German inventor and electrical engineer Werner von Siemens, who made significant contributions to the development of electrical engineering.

History & Origin

The concept of electrical conductance dates back to the early experiments with electricity, particularly in the 19th century. The formal definition and measurement of conductance emerged as researchers like Georg Simon Ohm established the relationship between voltage, current, and resistance. Ohm's Law (V = IR) laid the groundwork for understanding electrical circuits. The need for a standardized unit came as electrical systems became more complex, and the importance of conductance in circuit design and analysis increased. The siemens was introduced as a unit of conductance to formalize this aspect of electrical engineering.

Etymology: The term 'siemens' is derived from the name of Werner von Siemens, a prominent figure in the field of electrical engineering, reflecting his significant contributions to the development of electrical systems and technology.

1867: Werner von Siemens founded the...1960: The siemens was officially ado...

Current Use

Today, the siemens is widely utilized across various industries for measuring electrical conductance. It is an essential unit in electrical engineering, especially in the design and analysis of circuits. The telecommunications industry employs siemens to assess the conductance of transmission lines and cables, ensuring efficient signal transmission. In the field of electronics, components such as resistors, capacitors, and inductors are evaluated using siemens to determine their behavior in circuits. Furthermore, in the realm of materials science, researchers use this unit to characterize the electrical properties of materials, aiding in the development of conductive materials for various applications. Countries worldwide, including the USA, Germany, and Japan, utilize the siemens in both educational and professional settings, reinforcing its importance in global electrical engineering practices.

Electrical EngineeringTelecommunicationsElectronicsMaterials Science

💡 Fun Facts

  • The symbol for siemens, 'S', is a tribute to the inventor Werner von Siemens.
  • The siemens was introduced as an SI unit to standardize conductance measurements.
  • Conductance is the reciprocal of resistance, making siemens an essential unit in circuit analysis.

📏 Real-World Examples

0.005 S
Conductance of a copper wire
0.01 S
Conductance of a resistor
0.1 S
Conductance in a circuit
0.2 S
Conductance of a saline solution
0.05 S
Conductance of a semiconductor
0.03 S
Conductance in a capacitor

🔗 Related Units

Ohm (Resistance is the reciprocal of conductance; 1 S = 1/Ω.)Ampere (Conductance is defined as amperes per volt; 1 S = 1 A/V.)Volt (Voltage is essential in the conductance equation; G = I/V.)Mho (Mho is an older name for siemens, representing the same unit.)Siemens per Meter (Used for conductivity, indicating conductance per unit length.)Farad (Farads measure capacitance, which is related to conductance in AC circuits.)

Frequently Asked Questions

How do I convert to ?

To convert to , multiply your value by 1. For example, 10 equals 10 .

What is the formula for to conversion?

The formula is: = × 1. This conversion factor is based on international standards.

Is this to converter accurate?

Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.

Can I convert back to ?

Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.

Advertisement
AD SPACE - 320x100
BANNER AD - 320x50