Convert Siemens to Statmho and more • 68 conversions
0
The siemens (symbol: S) is the SI unit of electrical conductance, defined as the reciprocal of resistance in ohms. One siemens is equivalent to one ampere per volt, which can be expressed as S = A/V. This unit is used to measure how easily electricity can flow through a material or circuit. The siemens is a derived unit, belonging to the International System of Units (SI), and was adopted in 1960 during the 11th General Conference on Weights and Measures. It is named after the German inventor and electrical engineer Werner von Siemens, who made significant contributions to the development of electrical engineering.
Today, the siemens is widely utilized across various industries for measuring electrical conductance. It is an essential unit in electrical engineering, especially in the design and analysis of circuits. The telecommunications industry employs siemens to assess the conductance of transmission lines and cables, ensuring efficient signal transmission. In the field of electronics, components such as resistors, capacitors, and inductors are evaluated using siemens to determine their behavior in circuits. Furthermore, in the realm of materials science, researchers use this unit to characterize the electrical properties of materials, aiding in the development of conductive materials for various applications. Countries worldwide, including the USA, Germany, and Japan, utilize the siemens in both educational and professional settings, reinforcing its importance in global electrical engineering practices.
The symbol for siemens, 'S', is a tribute to the inventor Werner von Siemens.
The statmho (℧) is a unit of electrical conductance in the centimeter-gram-second (CGS) system of units. It is defined as the conductance of a circuit where a potential difference of one statvolt produces a current of one statampere. This unit is derived from the cgs electrostatic system, where the statvolt is defined in terms of the forces between electric charges, and the statampere is derived based on the interaction of charges in a vacuum. The statmho is equivalent to approximately 0.1 siemens, providing a crucial link between different systems of measurement. Conductance describes how easily electric current can flow through a conductor, a fundamental property in electrical engineering and physics.
While the statmho is not as commonly used today due to the widespread adoption of the SI units, it still finds application in certain fields, particularly in theoretical physics and electrical engineering. For example, in some areas of electrical research and advanced circuit design, engineers and physicists may revert to CGS units for convenience or historical context. Countries that continue to use CGS units include the United States in specific scientific research realms. Additionally, the statmho is relevant in academic settings where classical electromagnetism is taught, providing students with a historical perspective on electrical units. The unit also appears in literature discussing the historical context of electrical engineering.
The statmho is not commonly used in modern engineering, making it a historical curiosity.
= × 1.00000To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.
💡 Pro Tip: For the reverse conversion ( → ), divide by the conversion factor instead of multiplying.
electric • SI Unit
The siemens (symbol: S) is the SI unit of electrical conductance, defined as the reciprocal of resistance in ohms. One siemens is equivalent to one ampere per volt, which can be expressed as S = A/V. This unit is used to measure how easily electricity can flow through a material or circuit. The siemens is a derived unit, belonging to the International System of Units (SI), and was adopted in 1960 during the 11th General Conference on Weights and Measures. It is named after the German inventor and electrical engineer Werner von Siemens, who made significant contributions to the development of electrical engineering.
The concept of electrical conductance dates back to the early experiments with electricity, particularly in the 19th century. The formal definition and measurement of conductance emerged as researchers like Georg Simon Ohm established the relationship between voltage, current, and resistance. Ohm's Law (V = IR) laid the groundwork for understanding electrical circuits. The need for a standardized unit came as electrical systems became more complex, and the importance of conductance in circuit design and analysis increased. The siemens was introduced as a unit of conductance to formalize this aspect of electrical engineering.
Etymology: The term 'siemens' is derived from the name of Werner von Siemens, a prominent figure in the field of electrical engineering, reflecting his significant contributions to the development of electrical systems and technology.
Today, the siemens is widely utilized across various industries for measuring electrical conductance. It is an essential unit in electrical engineering, especially in the design and analysis of circuits. The telecommunications industry employs siemens to assess the conductance of transmission lines and cables, ensuring efficient signal transmission. In the field of electronics, components such as resistors, capacitors, and inductors are evaluated using siemens to determine their behavior in circuits. Furthermore, in the realm of materials science, researchers use this unit to characterize the electrical properties of materials, aiding in the development of conductive materials for various applications. Countries worldwide, including the USA, Germany, and Japan, utilize the siemens in both educational and professional settings, reinforcing its importance in global electrical engineering practices.
electric • Non-SI
The statmho (℧) is a unit of electrical conductance in the centimeter-gram-second (CGS) system of units. It is defined as the conductance of a circuit where a potential difference of one statvolt produces a current of one statampere. This unit is derived from the cgs electrostatic system, where the statvolt is defined in terms of the forces between electric charges, and the statampere is derived based on the interaction of charges in a vacuum. The statmho is equivalent to approximately 0.1 siemens, providing a crucial link between different systems of measurement. Conductance describes how easily electric current can flow through a conductor, a fundamental property in electrical engineering and physics.
The origin of the statmho can be traced back to the development of the centimeter-gram-second (CGS) system in the 19th century, which was widely adopted for scientific calculations and measurements. This system was established to provide a coherent framework for measuring physical quantities, including electricity. The statmho was introduced as a way to express electrical conductance in a manner consistent with the units used to measure electric charge and potential. The statmho, along with other units in the CGS system, became pivotal in the field of electromagnetism, particularly in the analysis of electric circuits and properties of materials.
Etymology: The term 'statmho' is derived from 'stat' indicating the static electric system and 'mho', which is an inversion of 'ohm', the unit of electrical resistance. The prefix 'stat' in this context refers to the static form of electric charge interactions, as opposed to dynamic systems.
While the statmho is not as commonly used today due to the widespread adoption of the SI units, it still finds application in certain fields, particularly in theoretical physics and electrical engineering. For example, in some areas of electrical research and advanced circuit design, engineers and physicists may revert to CGS units for convenience or historical context. Countries that continue to use CGS units include the United States in specific scientific research realms. Additionally, the statmho is relevant in academic settings where classical electromagnetism is taught, providing students with a historical perspective on electrical units. The unit also appears in literature discussing the historical context of electrical engineering.
Explore more electric conversions for your calculations.
To convert to , multiply your value by 1. For example, 10 equals 10 .
The formula is: = × 1. This conversion factor is based on international standards.
Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.
Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.