MetricConv logo
Home/Converters/Electric

Siemens Converter

Convert Siemens to Mho and more • 68 conversions

Result

0

1 0
Conversion Formula
1 = ---
Quick Reference
1 = 1
10 = 10
50 = 50
100 = 100
500 = 500
1000 = 1000

Unit Explanations

SiemensS

Source Unit

The siemens (symbol: S) is the SI unit of electrical conductance, defined as the reciprocal of resistance in ohms. One siemens is equivalent to one ampere per volt, which can be expressed as S = A/V. This unit is used to measure how easily electricity can flow through a material or circuit. The siemens is a derived unit, belonging to the International System of Units (SI), and was adopted in 1960 during the 11th General Conference on Weights and Measures. It is named after the German inventor and electrical engineer Werner von Siemens, who made significant contributions to the development of electrical engineering.

S = A/V

Current Use

Today, the siemens is widely utilized across various industries for measuring electrical conductance. It is an essential unit in electrical engineering, especially in the design and analysis of circuits. The telecommunications industry employs siemens to assess the conductance of transmission lines and cables, ensuring efficient signal transmission. In the field of electronics, components such as resistors, capacitors, and inductors are evaluated using siemens to determine their behavior in circuits. Furthermore, in the realm of materials science, researchers use this unit to characterize the electrical properties of materials, aiding in the development of conductive materials for various applications. Countries worldwide, including the USA, Germany, and Japan, utilize the siemens in both educational and professional settings, reinforcing its importance in global electrical engineering practices.

Fun Fact

The symbol for siemens, 'S', is a tribute to the inventor Werner von Siemens.

Mho

Target Unit

The mho, symbolized as ℧, is a unit of electrical conductance in the International System of Units (SI), defined as the reciprocal of resistance measured in ohms (Ω). One mho is equivalent to one siemens (S), which is the standardized SI unit for conductance. Conductance quantifies how easily electric current can flow through a conductor when a voltage is applied. The relationship between conductance and resistance is given by the formula: G = 1/R, where G is the conductance in mhos and R is the resistance in ohms. Since electrical conductance is a measure of the ability of an object to conduct electric current, the larger the mho value, the better the conductor. Mhos are commonly used in various electrical engineering applications to characterize the conductive properties of materials and components.

G = 1/R

Current Use

Today, the mho is utilized primarily in electrical engineering and related fields to describe the conductance of materials and components such as resistors, capacitors, and conductive pathways in circuits. It is particularly relevant in applications involving alternating current (AC) where impedance needs to be assessed. Various industries, including telecommunications, electronics, and power generation, rely on measurements of conductance in mhos for the design and analysis of circuits. Engineers may use this unit to evaluate the performance of electrical components, ensuring they meet required specifications for efficiency and safety. Notably, the mho is still prevalent in educational settings, particularly in physics and engineering courses that cover electrical concepts. In countries like the United States, the mho continues to be a recognized unit, while in many other nations, the siemens has become the dominant terminology. Nevertheless, both units are interchangeable, reflecting a shared understanding of electrical conductance across global engineering practices.

Fun Fact

The mho is one of the few units that is spelled backward (ohm).

Decimals:
Scientific:OFF

Result

0

1
0
Conversion Formula
1 = ...
1→1
10→10
100→100
1000→1000

📐Conversion Formula

= × 1.00000

How to Convert

To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.

Quick Examples

1
=
1.000
10
=
10.00
100
=
100.0

💡 Pro Tip: For the reverse conversion (), divide by the conversion factor instead of multiplying.

S

Siemens

electricSI Unit

Definition

The siemens (symbol: S) is the SI unit of electrical conductance, defined as the reciprocal of resistance in ohms. One siemens is equivalent to one ampere per volt, which can be expressed as S = A/V. This unit is used to measure how easily electricity can flow through a material or circuit. The siemens is a derived unit, belonging to the International System of Units (SI), and was adopted in 1960 during the 11th General Conference on Weights and Measures. It is named after the German inventor and electrical engineer Werner von Siemens, who made significant contributions to the development of electrical engineering.

History & Origin

The concept of electrical conductance dates back to the early experiments with electricity, particularly in the 19th century. The formal definition and measurement of conductance emerged as researchers like Georg Simon Ohm established the relationship between voltage, current, and resistance. Ohm's Law (V = IR) laid the groundwork for understanding electrical circuits. The need for a standardized unit came as electrical systems became more complex, and the importance of conductance in circuit design and analysis increased. The siemens was introduced as a unit of conductance to formalize this aspect of electrical engineering.

Etymology: The term 'siemens' is derived from the name of Werner von Siemens, a prominent figure in the field of electrical engineering, reflecting his significant contributions to the development of electrical systems and technology.

1867: Werner von Siemens founded the...1960: The siemens was officially ado...

Current Use

Today, the siemens is widely utilized across various industries for measuring electrical conductance. It is an essential unit in electrical engineering, especially in the design and analysis of circuits. The telecommunications industry employs siemens to assess the conductance of transmission lines and cables, ensuring efficient signal transmission. In the field of electronics, components such as resistors, capacitors, and inductors are evaluated using siemens to determine their behavior in circuits. Furthermore, in the realm of materials science, researchers use this unit to characterize the electrical properties of materials, aiding in the development of conductive materials for various applications. Countries worldwide, including the USA, Germany, and Japan, utilize the siemens in both educational and professional settings, reinforcing its importance in global electrical engineering practices.

Electrical EngineeringTelecommunicationsElectronicsMaterials Science

💡 Fun Facts

  • The symbol for siemens, 'S', is a tribute to the inventor Werner von Siemens.
  • The siemens was introduced as an SI unit to standardize conductance measurements.
  • Conductance is the reciprocal of resistance, making siemens an essential unit in circuit analysis.

📏 Real-World Examples

0.005 S
Conductance of a copper wire
0.01 S
Conductance of a resistor
0.1 S
Conductance in a circuit
0.2 S
Conductance of a saline solution
0.05 S
Conductance of a semiconductor
0.03 S
Conductance in a capacitor

🔗 Related Units

Ohm (Resistance is the reciprocal of conductance; 1 S = 1/Ω.)Ampere (Conductance is defined as amperes per volt; 1 S = 1 A/V.)Volt (Voltage is essential in the conductance equation; G = I/V.)Mho (Mho is an older name for siemens, representing the same unit.)Siemens per Meter (Used for conductivity, indicating conductance per unit length.)Farad (Farads measure capacitance, which is related to conductance in AC circuits.)

Mho

electricNon-SI

Definition

The mho, symbolized as ℧, is a unit of electrical conductance in the International System of Units (SI), defined as the reciprocal of resistance measured in ohms (Ω). One mho is equivalent to one siemens (S), which is the standardized SI unit for conductance. Conductance quantifies how easily electric current can flow through a conductor when a voltage is applied. The relationship between conductance and resistance is given by the formula: G = 1/R, where G is the conductance in mhos and R is the resistance in ohms. Since electrical conductance is a measure of the ability of an object to conduct electric current, the larger the mho value, the better the conductor. Mhos are commonly used in various electrical engineering applications to characterize the conductive properties of materials and components.

History & Origin

The term 'mho' originated in the late 19th century, emerging from the need to quantify electrical conductance, a concept that became more prominent with advancements in electrical engineering. As electrical systems proliferated, particularly in the development of telegraphy and later, electric power distribution, the measurement of how well a material could conduct electricity became essential. The reciprocal relationship between resistance and conductance was recognized, leading to the introduction of mho as a unit to denote conductance directly. The mho was particularly adopted in the United States and was used alongside other electrical units, facilitating clearer communication of conductance values in engineering.

Etymology: The word 'mho' is derived from 'ohm', the unit of electrical resistance, spelled backward.

1881: First use of the term 'mho' pu...1971: The siemens was adopted as the...

Current Use

Today, the mho is utilized primarily in electrical engineering and related fields to describe the conductance of materials and components such as resistors, capacitors, and conductive pathways in circuits. It is particularly relevant in applications involving alternating current (AC) where impedance needs to be assessed. Various industries, including telecommunications, electronics, and power generation, rely on measurements of conductance in mhos for the design and analysis of circuits. Engineers may use this unit to evaluate the performance of electrical components, ensuring they meet required specifications for efficiency and safety. Notably, the mho is still prevalent in educational settings, particularly in physics and engineering courses that cover electrical concepts. In countries like the United States, the mho continues to be a recognized unit, while in many other nations, the siemens has become the dominant terminology. Nevertheless, both units are interchangeable, reflecting a shared understanding of electrical conductance across global engineering practices.

Electrical EngineeringTelecommunicationsPower GenerationElectronicsManufacturing

💡 Fun Facts

  • The mho is one of the few units that is spelled backward (ohm).
  • Mhos were more commonly used before the siemens was adopted as the SI unit for conductance.
  • In certain engineering applications, conductance is more practical to use than resistance, particularly when dealing with conductive materials.

📏 Real-World Examples

3 mho
Measuring the conductance of a copper wire
0.5 mho
Testing a resistor's conductance in a circuit
0.02 mho
Evaluating an electrolyte solution
0.0001 mho
Analyzing the conductance of an insulator
0.3 mho
Conductance in a silicon semiconductor
0.15 mho
Measuring conductance of a battery's electrolyte

🔗 Related Units

Ohm (The mho is the reciprocal of an ohm.)Siemens (The siemens is the modern SI equivalent of the mho.)Ampere (Current flow is measured in amperes, which relates to conductance.)Volt (Voltage is related to conductance in the context of Ohm's Law.)Farad (Capacitance (in farads) can influence conductance in capacitive circuits.)Henry (Inductance can affect the overall conductance in AC circuits.)

Frequently Asked Questions

How do I convert to ?

To convert to , multiply your value by 1. For example, 10 equals 10 .

What is the formula for to conversion?

The formula is: = × 1. This conversion factor is based on international standards.

Is this to converter accurate?

Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.

Can I convert back to ?

Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.

Advertisement
AD SPACE - 320x100
BANNER AD - 320x50