MetricConv logo

Newton Converter

Convert Newton to Kilonewton and more • 33 conversions

Result

0

1 0
Conversion Formula
1 = ---
Quick Reference
1 = 1
10 = 10
50 = 50
100 = 100
500 = 500
1000 = 1000

Unit Explanations

NewtonN

Source Unit

The newton (symbol: N) is the SI unit of force, named after Sir Isaac Newton in recognition of his work in classical mechanics. It is defined as the amount of force required to accelerate a mass of one kilogram (1 kg) at a rate of one meter per second squared (1 m/s²). This relationship is mathematically expressed by Newton's second law of motion, F = ma, where 'F' represents force in newtons, 'm' is mass in kilograms, and 'a' is acceleration in meters per second squared. The newton is a derived unit in the International System of Units (SI), and it encompasses the measurement of both force and weight, providing a standard for scientific and engineering calculations.

F = m * a

Current Use

Today, the newton is widely used across various industries and scientific disciplines. In physics, it provides a standard measurement for force, enabling consistent calculations in mechanics. Engineering fields, particularly mechanical and civil engineering, utilize newtons for designing structures and systems that can withstand forces like tension, compression, and shear. The automotive industry uses newtons to evaluate forces acting on vehicles during crashes or performance tests. In the field of robotics, newtons help in the precise calculation of forces required for movement and manipulation. Countries that adhere to the International System of Units, particularly those in Europe, Asia, and many parts of Africa and South America, use the newton in scientific research, education, and industry. The newton is also utilized in aerospace for calculating thrust and lift forces, ensuring safety and efficiency in flight.

Fun Fact

The newton is equivalent to 0.225 pounds-force, illustrating the differences between metric and imperial systems.

KilonewtonkN

Target Unit

The kilonewton (kN) is a derived unit of force in the International System of Units (SI), defined as equivalent to 1,000 newtons (N). The newton, itself named after Sir Isaac Newton, is the force required to accelerate a one-kilogram mass by one meter per second squared. Therefore, a kilonewton represents the force necessary to accelerate 1,000 kilograms at the same rate. The use of kilonewtons is prevalent in engineering and physics, particularly for large forces, where expressing values in newtons becomes impractical. It is essential for calculations involving structural loads, mechanical systems, and various physical phenomena.

1 kN = 1000 N

Current Use

The kilonewton is widely used across various industries, particularly in civil and structural engineering, where it is used to express forces such as wind loads, seismic loads, and material strength. For instance, a typical residential building may have structural elements designed to withstand forces measured in kilonewtons due to environmental loads. In the aerospace industry, forces acting on aircraft during takeoff and landing are often expressed in kilonewtons for clarity and precision. Countries that commonly use kilonewtons include those within the SI system, such as most European nations, Canada, Australia, and parts of Asia. Additionally, in mechanical engineering, the kilonewton is used to measure the output force of machinery and engines, showcasing its versatility across disciplines.

Fun Fact

One kilonewton is approximately equal to 224.8 pounds-force.

Decimals:
Scientific:OFF

Result

0

1
0
Conversion Formula
1 = ...
1→1
10→10
100→100
1000→1000

📐Conversion Formula

= × 1.00000

How to Convert

To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.

Quick Examples

1
=
1.000
10
=
10.00
100
=
100.0

💡 Pro Tip: For the reverse conversion (), divide by the conversion factor instead of multiplying.

N

Newton

forceSI Unit

Definition

The newton (symbol: N) is the SI unit of force, named after Sir Isaac Newton in recognition of his work in classical mechanics. It is defined as the amount of force required to accelerate a mass of one kilogram (1 kg) at a rate of one meter per second squared (1 m/s²). This relationship is mathematically expressed by Newton's second law of motion, F = ma, where 'F' represents force in newtons, 'm' is mass in kilograms, and 'a' is acceleration in meters per second squared. The newton is a derived unit in the International System of Units (SI), and it encompasses the measurement of both force and weight, providing a standard for scientific and engineering calculations.

History & Origin

The newton was introduced as a unit of force in 1948 at the 9th General Conference on Weights and Measures (CGPM) as part of the International System of Units (SI). This was done to standardize measurements internationally and to honor Sir Isaac Newton's foundational contributions to physics. Newton's work laid the groundwork for classical mechanics, particularly his laws of motion which are crucial to understanding force and its applications in various fields. The adoption of the newton helped facilitate a universal language in scientific discourse, allowing for more accurate communication and collaboration across different disciplines.

Etymology: The term 'newton' is derived from the name of Sir Isaac Newton, the renowned English mathematician, physicist, and astronomer, who is widely recognized for formulating the laws of motion and universal gravitation.

1948: Introduction of the newton as ...

Current Use

Today, the newton is widely used across various industries and scientific disciplines. In physics, it provides a standard measurement for force, enabling consistent calculations in mechanics. Engineering fields, particularly mechanical and civil engineering, utilize newtons for designing structures and systems that can withstand forces like tension, compression, and shear. The automotive industry uses newtons to evaluate forces acting on vehicles during crashes or performance tests. In the field of robotics, newtons help in the precise calculation of forces required for movement and manipulation. Countries that adhere to the International System of Units, particularly those in Europe, Asia, and many parts of Africa and South America, use the newton in scientific research, education, and industry. The newton is also utilized in aerospace for calculating thrust and lift forces, ensuring safety and efficiency in flight.

PhysicsEngineeringAutomotiveRoboticsAerospace

💡 Fun Facts

  • The newton is equivalent to 0.225 pounds-force, illustrating the differences between metric and imperial systems.
  • A force of one newton is roughly the weight of a medium-sized apple.
  • In space, where gravity is negligible, the newton can still be used to measure forces exerted by spacecraft engines.

📏 Real-World Examples

9.81 N
The force required to lift a 1 kg object upwards at a constant speed
5 N
Force needed to accelerate a 5 kg cart from rest to 1 m/s²
20 N
Force exerted by a person pushing a shopping cart with a mass of 10 kg at 2 m/s²
147.15 N
Tension in a rope when lifting a 15 kg weight
100 N
The thrust produced by a small rocket engine generating 100 N of force
5000 N
Deceleration force applied to stop a 1000 kg car at a rate of 5 m/s²

🔗 Related Units

Pound-force (1 N = 0.225 lbf)Kilogram-force (1 N = 0.10197 kgf)Dyne (1 N = 100,000 dynes)Ton-force (1 N = 0.0002248 ton-force)Kilopond (1 N = 0.10197 kp)Joule per meter (1 N = 1 J/m)
kN

Kilonewton

forceSI Unit

Definition

The kilonewton (kN) is a derived unit of force in the International System of Units (SI), defined as equivalent to 1,000 newtons (N). The newton, itself named after Sir Isaac Newton, is the force required to accelerate a one-kilogram mass by one meter per second squared. Therefore, a kilonewton represents the force necessary to accelerate 1,000 kilograms at the same rate. The use of kilonewtons is prevalent in engineering and physics, particularly for large forces, where expressing values in newtons becomes impractical. It is essential for calculations involving structural loads, mechanical systems, and various physical phenomena.

History & Origin

The concept of force dates back to ancient civilizations, but the formalization of the unit as the newton occurred in the late 19th century. The kilonewton emerged as a practical measure in the 20th century, coinciding with advancements in engineering and the need for standardized measurements in construction and manufacturing. The International System of Units (SI), established in 1960, included the newton as a base unit and subsequently the kilonewton as a derived unit for convenience in expressing larger forces in a manageable form.

Etymology: The term 'kilonewton' is derived from the prefix 'kilo-' meaning one thousand, combined with 'newton', which honors Sir Isaac Newton, a key figure in classical mechanics.

1960: The newton was officially reco...

Current Use

The kilonewton is widely used across various industries, particularly in civil and structural engineering, where it is used to express forces such as wind loads, seismic loads, and material strength. For instance, a typical residential building may have structural elements designed to withstand forces measured in kilonewtons due to environmental loads. In the aerospace industry, forces acting on aircraft during takeoff and landing are often expressed in kilonewtons for clarity and precision. Countries that commonly use kilonewtons include those within the SI system, such as most European nations, Canada, Australia, and parts of Asia. Additionally, in mechanical engineering, the kilonewton is used to measure the output force of machinery and engines, showcasing its versatility across disciplines.

Civil EngineeringAerospaceMechanical EngineeringConstructionAutomotive

💡 Fun Facts

  • One kilonewton is approximately equal to 224.8 pounds-force.
  • The weight of an average car is about 10-15 kN.
  • A force of 1 kN can lift about 100 kg against Earth's gravity.

📏 Real-World Examples

1 kN
Force exerted by a car engine during acceleration.
50 kN
Wind load on a 10-story building.
9.81 kN
Weight of a 1000 kg vehicle.
4.9 kN
Pulling force required to lift a 500 kg load.
200 kN
Force on a bridge due to traffic.
150 kN
Tensile strength of a steel cable.

🔗 Related Units

Newton (1 kN = 1000 N)Pound-force (1 kN ≈ 224.8 lbf)Meganewton (1 MN = 1000 kN)Hectonewton (1 hN = 0.1 kN)Kilogram-force (1 kN ≈ 101.97 kgf)Dyne (1 kN = 10^5 dyn)

Frequently Asked Questions

How do I convert to ?

To convert to , multiply your value by 1. For example, 10 equals 10 .

What is the formula for to conversion?

The formula is: = × 1. This conversion factor is based on international standards.

Is this to converter accurate?

Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.

Can I convert back to ?

Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.

Advertisement
AD SPACE - 320x100
BANNER AD - 320x50