MetricConv logo

Newton Converter

Convert Newton to Kilogram Force and more • 33 conversions

Result

0

1 0
Conversion Formula
1 = ---
Quick Reference
1 = 1
10 = 10
50 = 50
100 = 100
500 = 500
1000 = 1000

Unit Explanations

NewtonN

Source Unit

The newton (symbol: N) is the SI unit of force, named after Sir Isaac Newton in recognition of his work in classical mechanics. It is defined as the amount of force required to accelerate a mass of one kilogram (1 kg) at a rate of one meter per second squared (1 m/s²). This relationship is mathematically expressed by Newton's second law of motion, F = ma, where 'F' represents force in newtons, 'm' is mass in kilograms, and 'a' is acceleration in meters per second squared. The newton is a derived unit in the International System of Units (SI), and it encompasses the measurement of both force and weight, providing a standard for scientific and engineering calculations.

F = m * a

Current Use

Today, the newton is widely used across various industries and scientific disciplines. In physics, it provides a standard measurement for force, enabling consistent calculations in mechanics. Engineering fields, particularly mechanical and civil engineering, utilize newtons for designing structures and systems that can withstand forces like tension, compression, and shear. The automotive industry uses newtons to evaluate forces acting on vehicles during crashes or performance tests. In the field of robotics, newtons help in the precise calculation of forces required for movement and manipulation. Countries that adhere to the International System of Units, particularly those in Europe, Asia, and many parts of Africa and South America, use the newton in scientific research, education, and industry. The newton is also utilized in aerospace for calculating thrust and lift forces, ensuring safety and efficiency in flight.

Fun Fact

The newton is equivalent to 0.225 pounds-force, illustrating the differences between metric and imperial systems.

Kilogram-Forcekgf

Target Unit

The kilogram-force (kgf) is a unit of force that is defined as the force exerted by one kilogram of mass in a gravitational field where standard gravity is approximately 9.80665 meters per second squared. This means that a mass of one kilogram will experience a force of about 9.81 newtons (N) under normal Earth gravity conditions. The kilogram-force is often used in engineering and various applications to express forces in a more intuitive manner, particularly in fields where the force applied by a mass needs to be communicated in terms of weight. The use of kgf provides a practical understanding of the force that a given mass will exert due to gravity, allowing for easier calculations in dynamics and structural engineering.

F = m * g

Current Use

Today, the kilogram-force is commonly used in industries such as mechanical engineering, structural engineering, and construction. It serves as a practical unit for expressing forces in relation to weight, particularly in contexts where materials are being tested for strength and durability. For instance, in construction, the load-bearing capacity of materials is often described in kgf to provide a straightforward understanding of how much weight they can support. Countries such as the United States, India, and various European nations still utilize the kilogram-force, especially in fields that have historically relied on traditional metric measurements. In mechanical applications, the kgf is used to specify the forces exerted by springs, weights, and other components, allowing engineers to design systems that can withstand specific loads. Additionally, in sports and fitness, the kgf is sometimes used to describe the force exerted during weightlifting exercises, providing athletes and trainers a practical understanding of the loads being lifted.

Fun Fact

The kilogram-force is still used in some countries for weightlifting competitions.

Decimals:
Scientific:OFF

Result

0

1
0
Conversion Formula
1 = ...
1→1
10→10
100→100
1000→1000

Convert Newton to Kilogram-Force (N to kgf)

Convert Newtons (N) to Kilogram-Force (kgf). Newtons are abstract for many people. Kilogram-force explains force in terms of 'weight lifted'. 1 kgf is simply the force gravity exerts on 1 kg of mass on Earth.

Conversion Formula
kgf = N ÷ 9.80665

Divide Newtons by approx 9.81 (Standard Gravity). For example, 100 N ≈ 10.2 kgf.

IN

Newton (N)

Definition

SI unit of force.

Origins & History

Based on acceleration of mass.

Current Use: Physics, engineering.
OUT

Kilogram-Force (kgf)

Definition

Force exerted by one kg of mass in standard gravity.

Origins & History

Gravitational metric system (deprecated but popular).

Current Use: Bicycle spoke tension, rock climbing gear ratings.

📐Conversion Formula

= × 1.00000

How to Convert

To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.

Quick Examples

1
=
1.000
10
=
10.00
100
=
100.0

💡 Pro Tip: For the reverse conversion (), divide by the conversion factor instead of multiplying.

N

Newton

forceSI Unit

Definition

The newton (symbol: N) is the SI unit of force, named after Sir Isaac Newton in recognition of his work in classical mechanics. It is defined as the amount of force required to accelerate a mass of one kilogram (1 kg) at a rate of one meter per second squared (1 m/s²). This relationship is mathematically expressed by Newton's second law of motion, F = ma, where 'F' represents force in newtons, 'm' is mass in kilograms, and 'a' is acceleration in meters per second squared. The newton is a derived unit in the International System of Units (SI), and it encompasses the measurement of both force and weight, providing a standard for scientific and engineering calculations.

History & Origin

The newton was introduced as a unit of force in 1948 at the 9th General Conference on Weights and Measures (CGPM) as part of the International System of Units (SI). This was done to standardize measurements internationally and to honor Sir Isaac Newton's foundational contributions to physics. Newton's work laid the groundwork for classical mechanics, particularly his laws of motion which are crucial to understanding force and its applications in various fields. The adoption of the newton helped facilitate a universal language in scientific discourse, allowing for more accurate communication and collaboration across different disciplines.

Etymology: The term 'newton' is derived from the name of Sir Isaac Newton, the renowned English mathematician, physicist, and astronomer, who is widely recognized for formulating the laws of motion and universal gravitation.

1948: Introduction of the newton as ...

Current Use

Today, the newton is widely used across various industries and scientific disciplines. In physics, it provides a standard measurement for force, enabling consistent calculations in mechanics. Engineering fields, particularly mechanical and civil engineering, utilize newtons for designing structures and systems that can withstand forces like tension, compression, and shear. The automotive industry uses newtons to evaluate forces acting on vehicles during crashes or performance tests. In the field of robotics, newtons help in the precise calculation of forces required for movement and manipulation. Countries that adhere to the International System of Units, particularly those in Europe, Asia, and many parts of Africa and South America, use the newton in scientific research, education, and industry. The newton is also utilized in aerospace for calculating thrust and lift forces, ensuring safety and efficiency in flight.

PhysicsEngineeringAutomotiveRoboticsAerospace

💡 Fun Facts

  • The newton is equivalent to 0.225 pounds-force, illustrating the differences between metric and imperial systems.
  • A force of one newton is roughly the weight of a medium-sized apple.
  • In space, where gravity is negligible, the newton can still be used to measure forces exerted by spacecraft engines.

📏 Real-World Examples

9.81 N
The force required to lift a 1 kg object upwards at a constant speed
5 N
Force needed to accelerate a 5 kg cart from rest to 1 m/s²
20 N
Force exerted by a person pushing a shopping cart with a mass of 10 kg at 2 m/s²
147.15 N
Tension in a rope when lifting a 15 kg weight
100 N
The thrust produced by a small rocket engine generating 100 N of force
5000 N
Deceleration force applied to stop a 1000 kg car at a rate of 5 m/s²

🔗 Related Units

Pound-force (1 N = 0.225 lbf)Kilogram-force (1 N = 0.10197 kgf)Dyne (1 N = 100,000 dynes)Ton-force (1 N = 0.0002248 ton-force)Kilopond (1 N = 0.10197 kp)Joule per meter (1 N = 1 J/m)
kgf

Kilogram-Force

forceNon-SI

Definition

The kilogram-force (kgf) is a unit of force that is defined as the force exerted by one kilogram of mass in a gravitational field where standard gravity is approximately 9.80665 meters per second squared. This means that a mass of one kilogram will experience a force of about 9.81 newtons (N) under normal Earth gravity conditions. The kilogram-force is often used in engineering and various applications to express forces in a more intuitive manner, particularly in fields where the force applied by a mass needs to be communicated in terms of weight. The use of kgf provides a practical understanding of the force that a given mass will exert due to gravity, allowing for easier calculations in dynamics and structural engineering.

History & Origin

The kilogram-force was established in the 19th century as a way to relate mass to the force exerted by that mass under Earth's gravity. The concept emerged from the need to quantify forces in terms of mass and the acceleration due to gravity, particularly in mechanical and engineering applications. The kilogram-force allows for easier calculations when working with weights and forces, especially before the widespread adoption of the International System of Units (SI). The kilogram-force was widely adopted in various industries, particularly in mechanical engineering, where it provided a direct relationship between mass and force, making it easier for engineers to design systems that accounted for load and stress. Its practical applications made it a staple in engineering calculations until the SI unit of force, the newton, became more widely accepted.

Etymology: The term 'kilogram-force' is derived from the combination of 'kilogram,' which is the base unit of mass in the metric system, and 'force,' which describes the interaction that causes an object to change its motion. The prefix 'kilo-' comes from the Greek word 'chilioi,' meaning a thousand, indicating a mass of one thousand grams.

1889: The kilogram was officially de...1960: The kilogram-force was integra...

Current Use

Today, the kilogram-force is commonly used in industries such as mechanical engineering, structural engineering, and construction. It serves as a practical unit for expressing forces in relation to weight, particularly in contexts where materials are being tested for strength and durability. For instance, in construction, the load-bearing capacity of materials is often described in kgf to provide a straightforward understanding of how much weight they can support. Countries such as the United States, India, and various European nations still utilize the kilogram-force, especially in fields that have historically relied on traditional metric measurements. In mechanical applications, the kgf is used to specify the forces exerted by springs, weights, and other components, allowing engineers to design systems that can withstand specific loads. Additionally, in sports and fitness, the kgf is sometimes used to describe the force exerted during weightlifting exercises, providing athletes and trainers a practical understanding of the loads being lifted.

Mechanical EngineeringStructural EngineeringConstructionFitnessManufacturing

💡 Fun Facts

  • The kilogram-force is still used in some countries for weightlifting competitions.
  • In engineering, forces are often calculated in kgf for ease of understanding relative weights.
  • The kilogram-force can be confusing because it mixes mass and force concepts, affecting calculations.

📏 Real-World Examples

1 kgf
A 1 kg mass on Earth's surface experiences gravitational force.
50 kgf
A weightlifter lifts 50 kg of weights.
50 kgf
A spring with a stiffness of 100 kgf/m is compressed by 0.5 m.
10 kgf
A person applies a force of 10 kgf to push a cart.
9806.65 kgf
A car with a weight of 1000 kg exerts a force of 9806.65 kgf on the ground.
1961.3 kgf
A crane lifts a load of 200 kg, exerting a force of 1961.3 kgf.

🔗 Related Units

Newton (1 kgf = 9.80665 N)Pound-Force (1 kgf ≈ 2.20462 lbf)Gram-Force (1 kgf = 1000 gf)Kilonewton (1 kgf ≈ 0.00981 kN)Ton-Force (1 kgf ≈ 0.001 ton-force)Ounce-Force (1 kgf ≈ 35.274 ozf)

Frequently Asked Questions

How do I convert to ?

To convert to , multiply your value by 1. For example, 10 equals 10 .

What is the formula for to conversion?

The formula is: = × 1. This conversion factor is based on international standards.

Is this to converter accurate?

Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.

Can I convert back to ?

Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.

Advertisement
AD SPACE - 320x100
BANNER AD - 320x50