Convert Milligray to Gray and more • 73 conversions
0
The milligray (mGy) is a derived unit of absorbed radiation dose in the International System of Units (SI). It represents the absorption of one milli joule of energy per kilogram of matter. The gray (Gy), the SI unit of radiation dose, is defined as the absorption of one joule of ionizing radiation by one kilogram of matter. Therefore, a milligray is one-thousandth of a gray, which allows for the measurement of smaller doses of radiation that are often encountered in medical and environmental contexts.
Milligrays are commonly used in the medical field, especially in radiology and radiation therapy, to quantify the dose of radiation received by patients. For instance, a chest X-ray may deliver a dose of approximately 0.1 mGy, while certain cancer treatments can involve doses in the range of hundreds of milligrays. Additionally, environmental monitoring of radiation exposure in nuclear facilities or during radiological emergencies often utilizes the milligray for reporting purposes. This unit helps ensure the safety of workers and the public by providing clear dosage information.
The milligray is used to express small doses of radiation that are often encountered in medical imaging.
The gray (Gy) is the SI derived unit of absorbed dose of ionizing radiation, defined as the absorption of one joule of radiation energy by one kilogram of matter. It quantifies the amount of energy deposited by radiation in a specified mass of material, which in biological contexts is often human tissue. The gray is crucial in assessing radiation exposure and its potential biological effects, and it serves as a fundamental unit in radiation safety and protection protocols.
The gray is widely used in medical fields, particularly in radiation therapy for cancer treatment, where precise dosages are critical for effective treatment while minimizing damage to surrounding healthy tissue. It is also employed in radiological assessments, nuclear power, and safety protocols for radiation workers. Various international organizations, including the International Atomic Energy Agency (IAEA), utilize the gray for consistent communication regarding radiation exposure levels.
The gray is equivalent to 100 rad, an older unit of absorbed dose.
= × 1.00000To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.
💡 Pro Tip: For the reverse conversion ( → ), divide by the conversion factor instead of multiplying.
radiation • Non-SI
The milligray (mGy) is a derived unit of absorbed radiation dose in the International System of Units (SI). It represents the absorption of one milli joule of energy per kilogram of matter. The gray (Gy), the SI unit of radiation dose, is defined as the absorption of one joule of ionizing radiation by one kilogram of matter. Therefore, a milligray is one-thousandth of a gray, which allows for the measurement of smaller doses of radiation that are often encountered in medical and environmental contexts.
The concept of measuring absorbed radiation began in the early 20th century, as researchers sought to quantify the biological effects of radiation exposure. The gray was adopted as an SI unit in 1975, with the milligray emerging as a convenient subunit for practical applications. The need for precise dosimetry in medical treatments such as radiotherapy and diagnostic imaging led to the widespread use of the milligray, allowing healthcare professionals to monitor and manage patient exposure to ionizing radiation effectively.
Etymology: The term 'gray' is named after the British physicist Louis Harold Gray, who made significant contributions to the understanding of radiation's biological effects.
Milligrays are commonly used in the medical field, especially in radiology and radiation therapy, to quantify the dose of radiation received by patients. For instance, a chest X-ray may deliver a dose of approximately 0.1 mGy, while certain cancer treatments can involve doses in the range of hundreds of milligrays. Additionally, environmental monitoring of radiation exposure in nuclear facilities or during radiological emergencies often utilizes the milligray for reporting purposes. This unit helps ensure the safety of workers and the public by providing clear dosage information.
radiation • SI Unit
The gray (Gy) is the SI derived unit of absorbed dose of ionizing radiation, defined as the absorption of one joule of radiation energy by one kilogram of matter. It quantifies the amount of energy deposited by radiation in a specified mass of material, which in biological contexts is often human tissue. The gray is crucial in assessing radiation exposure and its potential biological effects, and it serves as a fundamental unit in radiation safety and protection protocols.
The gray was introduced in 1975 by the International System of Units (SI) as the unit of absorbed dose to provide a standardized measurement for radiation exposure. Its creation was a response to the need for a unified system that could facilitate consistency in scientific research and practical applications in radiology, nuclear medicine, and radiation therapy.
Etymology: The unit is named after the British physicist Louis Harold Gray, who made significant contributions to the field of radiation therapy and the study of radiation's effects on biological tissue.
The gray is widely used in medical fields, particularly in radiation therapy for cancer treatment, where precise dosages are critical for effective treatment while minimizing damage to surrounding healthy tissue. It is also employed in radiological assessments, nuclear power, and safety protocols for radiation workers. Various international organizations, including the International Atomic Energy Agency (IAEA), utilize the gray for consistent communication regarding radiation exposure levels.
Explore more radiation conversions for your calculations.
To convert to , multiply your value by 1. For example, 10 equals 10 .
The formula is: = × 1. This conversion factor is based on international standards.
Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.
Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.