MetricConv logo

Kilogram Cubic Meter Converter

Convert Kilogram Cubic Meter to Kilogram Liter and more • 42 conversions

Result

0

1 0
Conversion Formula
1 = ---
Quick Reference
1 = 1
10 = 10
50 = 50
100 = 100
500 = 500
1000 = 1000

Unit Explanations

Kilogram per Cubic Meterkg/m³

Source Unit

The kilogram per cubic meter (kg/m³) is the SI derived unit of density, defined as the mass of an object in kilograms divided by its volume in cubic meters. This unit allows for a direct comparison of the mass of a substance relative to its volume, providing insights into material properties and behaviors. For example, a density of 1,000 kg/m³ indicates that a cubic meter of the substance weighs 1,000 kilograms. Density is a crucial factor in various fields such as physics, engineering, and environmental science, influencing buoyancy, material selection, and thermodynamic calculations. The kg/m³ unit is widely used in scientific research and industry to quantify the density of liquids, gases, and solids.

Density (ρ) = Mass (m) / Volume (V)

Current Use

The kilogram per cubic meter is widely utilized in various industries, including construction, manufacturing, and environmental science. In the construction industry, it serves as a critical parameter for assessing the density of materials such as concrete, wood, and insulation, influencing structural integrity and thermal performance. In manufacturing, kg/m³ is essential for determining material properties in product design, ensuring optimal performance and safety. The environmental sector employs this unit to measure pollutant concentrations in air and water, aiding in compliance with health regulations. Countries such as the USA, Canada, and those in the European Union have adopted kg/m³ as a standard unit of measure for density in scientific research, industry standards, and regulations. Additionally, it plays a vital role in academia, where students and researchers rely on this unit for experiments and theoretical calculations.

Fun Fact

Water achieves its maximum density at 4°C, which is critical for aquatic life in cold climates.

Kilogram per Literkg/L

Target Unit

The kilogram per liter (kg/L) is a metric unit of concentration that quantifies the density of a substance, indicating how many kilograms of that substance are contained in one liter of volume. It is widely used in various scientific and industrial applications to express the concentration of solutions, the density of materials, and other related measurements. This unit is especially useful in chemistry and biology, where understanding the concentration of solutions is critical for reactions and experiments. The kilogram per liter is equivalent to 1,000 grams per cubic meter (g/m³) and is part of the International System of Units (SI). It provides a straightforward way to compare the densities of different substances and is commonly used in laboratory settings, food science, and pharmaceuticals.

Density (ρ) = Mass (m) / Volume (V)

Current Use

Today, the kilogram per liter is extensively used in various industries, including pharmaceuticals, food and beverage, and environmental science, to measure the density of liquids and solutions. In the pharmaceutical industry, kg/L is crucial for formulating drug solutions, ensuring accurate dosing and efficacy. In food science, it helps in determining the concentration of ingredients, which is vital for quality control and nutritional labeling. Environmental scientists utilize kg/L to assess the density of pollutants in water, aiding in contamination studies and remediation efforts. Countries across the globe, especially those using the metric system, including France, Germany, Canada, and Australia, commonly employ this unit in both scientific and commercial applications. Its relevance in regulatory frameworks further solidifies its importance in international trade and compliance.

Fun Fact

Water is most dense at 4°C, which is unique among substances.

Decimals:
Scientific:OFF

Result

0

1
0
Conversion Formula
1 = ...
1→1
10→10
100→100
1000→1000

📐Conversion Formula

= × 1.00000

How to Convert

To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.

Quick Examples

1
=
1.000
10
=
10.00
100
=
100.0

💡 Pro Tip: For the reverse conversion (), divide by the conversion factor instead of multiplying.

kg/m³

Kilogram per Cubic Meter

densitySI Unit

Definition

The kilogram per cubic meter (kg/m³) is the SI derived unit of density, defined as the mass of an object in kilograms divided by its volume in cubic meters. This unit allows for a direct comparison of the mass of a substance relative to its volume, providing insights into material properties and behaviors. For example, a density of 1,000 kg/m³ indicates that a cubic meter of the substance weighs 1,000 kilograms. Density is a crucial factor in various fields such as physics, engineering, and environmental science, influencing buoyancy, material selection, and thermodynamic calculations. The kg/m³ unit is widely used in scientific research and industry to quantify the density of liquids, gases, and solids.

History & Origin

The concept of density dates back to ancient civilizations, where early philosophers and scientists pondered the relationship between mass and volume. However, the formalization of density as a measurable quantity began in the 17th century with the scientific revolution, which emphasized empirical measurement and experimentation. The kilogram as a unit of mass was first defined in 1795 and was originally based on the mass of a liter of water at its maximum density. The cubic meter was established later in the metric system as the standard unit of volume, thus allowing for the expression of density in kg/m³. This combination of mass and volume measurements provided a standardized method to quantify density across various materials and applications.

Etymology: The word 'kilogram' derives from the French 'kilogramme', which combines the prefix 'kilo-' (meaning one thousand) with 'gramme', a unit of mass. 'Cubic meter' incorporates the word 'cubic', which comes from the Latin 'cubus', meaning 'cube', and 'meter', from the Greek 'metron', meaning 'measure'.

1795: Definition of the kilogram as ...1799: The kilogram was represented b...1960: The kilogram was officially ad...

Current Use

The kilogram per cubic meter is widely utilized in various industries, including construction, manufacturing, and environmental science. In the construction industry, it serves as a critical parameter for assessing the density of materials such as concrete, wood, and insulation, influencing structural integrity and thermal performance. In manufacturing, kg/m³ is essential for determining material properties in product design, ensuring optimal performance and safety. The environmental sector employs this unit to measure pollutant concentrations in air and water, aiding in compliance with health regulations. Countries such as the USA, Canada, and those in the European Union have adopted kg/m³ as a standard unit of measure for density in scientific research, industry standards, and regulations. Additionally, it plays a vital role in academia, where students and researchers rely on this unit for experiments and theoretical calculations.

ConstructionManufacturingEnvironmental ScienceAerospaceFood and BeverageChemical Engineering

💡 Fun Facts

  • Water achieves its maximum density at 4°C, which is critical for aquatic life in cold climates.
  • Mercury is one of the densest liquids, making it useful in thermometers.
  • The density of an object determines whether it will float or sink in a fluid.

📏 Real-World Examples

1000 kg/m³
Density of water at 4°C
2400 kg/m³
Density of concrete
1.225 kg/m³
Density of air at sea level
800 kg/m³
Density of oil
2700 kg/m³
Density of aluminum
789 kg/m³
Density of ethanol

🔗 Related Units

Gram per Cubic Centimeter (1 kg/m³ = 0.001 g/cm³)Pound per Cubic Foot (1 kg/m³ = 0.06243 lb/ft³)Gram per Liter (1 kg/m³ = 1 g/L)Ounce per Gallon (1 kg/m³ = 0.00834 oz/gal)Kilogram per Liter (1 kg/m³ = 1 kg/L)Ton per Cubic Meter (1 kg/m³ = 0.001 t/m³)
kg/L

Kilogram per Liter

concentrationNon-SI

Definition

The kilogram per liter (kg/L) is a metric unit of concentration that quantifies the density of a substance, indicating how many kilograms of that substance are contained in one liter of volume. It is widely used in various scientific and industrial applications to express the concentration of solutions, the density of materials, and other related measurements. This unit is especially useful in chemistry and biology, where understanding the concentration of solutions is critical for reactions and experiments. The kilogram per liter is equivalent to 1,000 grams per cubic meter (g/m³) and is part of the International System of Units (SI). It provides a straightforward way to compare the densities of different substances and is commonly used in laboratory settings, food science, and pharmaceuticals.

History & Origin

The kilogram per liter originated from the need to measure and quantify the density of various substances in scientific and industrial contexts. The metric system was established in France in the late 18th century, aiming to provide a universal system of measurement. The kilogram was defined as the mass of a specific platinum-iridium cylinder, and the liter was established as the volume of one cubic decimeter of water at maximum density. As the metric system gained global acceptance, the kg/L became a standard unit for expressing density, particularly in fields like chemistry, biology, and engineering where precise measurements are essential.

Etymology: The term 'kilogram' derives from the French 'kilogramme', where 'kilo-' signifies a factor of one thousand and 'gram' is based on the Greek word 'gramma', meaning a small weight. 'Liter' comes from the French 'litre', which is rooted in the Latin 'litra', meaning a unit of weight.

1795: The kilogram was defined as a ...1795: The liter was defined as the v...1960: The metric system was adopted ...

Current Use

Today, the kilogram per liter is extensively used in various industries, including pharmaceuticals, food and beverage, and environmental science, to measure the density of liquids and solutions. In the pharmaceutical industry, kg/L is crucial for formulating drug solutions, ensuring accurate dosing and efficacy. In food science, it helps in determining the concentration of ingredients, which is vital for quality control and nutritional labeling. Environmental scientists utilize kg/L to assess the density of pollutants in water, aiding in contamination studies and remediation efforts. Countries across the globe, especially those using the metric system, including France, Germany, Canada, and Australia, commonly employ this unit in both scientific and commercial applications. Its relevance in regulatory frameworks further solidifies its importance in international trade and compliance.

PharmaceuticalsFood and BeverageEnvironmental ScienceChemistryManufacturing

💡 Fun Facts

  • Water is most dense at 4°C, which is unique among substances.
  • The kilogram was originally defined by a physical object, the 'Kilogram of the Archives'.
  • Honey's density can vary significantly based on its moisture content.

📏 Real-World Examples

1 kg/L
Density of water
0.92 kg/L
Olive oil density
0.789 kg/L
Ethanol density
13.6 kg/L
Mercury density
1.42 kg/L
Honey density
1.03 kg/L
Milk density

🔗 Related Units

Gram per Liter (1 kg/L = 1000 g/L)Pound per Gallon (1 kg/L ≈ 8.34 lb/gal)Gram per Cubic Meter (1 kg/L = 1000 g/m³)Ounce per Gallon (1 kg/L ≈ 128 oz/gal)Ton per Cubic Meter (1 kg/L = 1 ton/m³)Milligram per Liter (1 kg/L = 1,000,000 mg/L)

Frequently Asked Questions

How do I convert to ?

To convert to , multiply your value by 1. For example, 10 equals 10 .

What is the formula for to conversion?

The formula is: = × 1. This conversion factor is based on international standards.

Is this to converter accurate?

Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.

Can I convert back to ?

Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.

Advertisement
AD SPACE - 320x100
BANNER AD - 320x50