MetricConv logo
Home/Converters/Frequency

Hertz Converter

Convert Hertz to Megahertz and more • 38 conversions

Result

0

1 0
Conversion Formula
1 = ---
Quick Reference
1 = 1
10 = 10
50 = 50
100 = 100
500 = 500
1000 = 1000

Unit Explanations

HertzHz

Source Unit

The hertz (Hz) is the standard unit of frequency in the International System of Units (SI), representing the number of cycles of a periodic phenomenon occurring in one second. It is defined as one cycle per second and is utilized to quantify oscillations, waves, and repetitive events in various fields, including physics, engineering, and telecommunications. The hertz encompasses a wide range of frequencies, from extremely low frequencies in the audible spectrum to extremely high frequencies in radio and microwave domains. The unit is named after Heinrich Hertz, a German physicist who made significant contributions to the study of electromagnetic waves. His pioneering experiments in the late 19th century led to the foundational understanding of wireless communication, making the hertz a pivotal unit in both theoretical and applied physics.

1 Hz = 1 cycle/second

Current Use

The hertz is widely utilized across various industries, including telecommunications, audio engineering, and medical equipment. In telecommunications, frequencies are crucial for the transmission of data and signals, with radio frequencies ranging from 3 kHz to 300 GHz being used for broadcasting and wireless communication. In audio engineering, sound frequencies are measured in hertz, with the human auditory range typically between 20 Hz and 20 kHz, impacting music production and sound design. Additionally, in medical imaging, techniques such as MRI utilize radio frequency signals measured in hertz to create detailed images of the body. Countries around the world, including the United States, Germany, and Japan, employ the hertz in various applications, ensuring uniformity in frequency measurements essential for technology and scientific research.

Fun Fact

The hertz is named after Heinrich Hertz, who was the first to conclusively prove the existence of electromagnetic waves.

MegahertzMHz

Target Unit

The megahertz (MHz) is a unit of frequency that is widely used in telecommunications and electronics to denote one million cycles per second. It is part of the International System of Units (SI) and serves as a crucial measure for various applications, including radio frequency, sound waves, and digital signals. In essence, 1 MHz is equivalent to 1,000,000 hertz (Hz), where a hertz is defined as one cycle per second. The concept of frequency is fundamental to understanding wave phenomena, allowing for the quantification of oscillations in various contexts, such as sound, light, and electromagnetic waves. The megahertz scale is particularly significant in radio communications, where it helps in distinguishing between different channels and frequencies.

1 MHz = 10^6 Hz

Current Use

Today, the megahertz is widely used in various industries, including telecommunications, computing, and broadcasting. In the telecommunications sector, frequencies in the megahertz range are essential for radio transmission and reception, enabling devices such as radios, televisions, and mobile phones to operate effectively. For example, FM radio stations typically broadcast in the range of 88 to 108 MHz. In computing, processor speeds are often measured in megahertz, influencing performance; for instance, a 3.0 GHz processor operates at 3000 MHz. Additionally, in the medical field, imaging techniques like MRI utilize megahertz frequencies for imaging the human body, demonstrating the wide applicability of the unit in both everyday technology and advanced scientific applications.

Fun Fact

The megahertz was first defined in the early 20th century as radio technology developed.

Decimals:
Scientific:OFF

Result

0

1
0
Conversion Formula
1 = ...
1→1
10→10
100→100
1000→1000

Convert Hertz to Megahertz

Converting Hertz to Megahertz is important due to the differences between measurement scales.

Conversion Formula
megahertz = hertz × [Factor]

Multiply by the conversion factor.

IN

Hertz

Definition

The SI unit of frequency (samples per second).

Origins & History

Named after Heinrich Hertz.

Current Use: Common in frequency.
OUT

Megahertz

Definition

1,000,000 Hertz.

Origins & History

Common in radio and computing.

Current Use: Common in frequency.

📐Conversion Formula

= × 1.00000

How to Convert

To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.

Quick Examples

1
=
1.000
10
=
10.00
100
=
100.0

💡 Pro Tip: For the reverse conversion (), divide by the conversion factor instead of multiplying.

Hz

Hertz

frequencySI Unit

Definition

The hertz (Hz) is the standard unit of frequency in the International System of Units (SI), representing the number of cycles of a periodic phenomenon occurring in one second. It is defined as one cycle per second and is utilized to quantify oscillations, waves, and repetitive events in various fields, including physics, engineering, and telecommunications. The hertz encompasses a wide range of frequencies, from extremely low frequencies in the audible spectrum to extremely high frequencies in radio and microwave domains. The unit is named after Heinrich Hertz, a German physicist who made significant contributions to the study of electromagnetic waves. His pioneering experiments in the late 19th century led to the foundational understanding of wireless communication, making the hertz a pivotal unit in both theoretical and applied physics.

History & Origin

The concept of frequency has been recognized since the early studies of harmonic motion and waves. The term 'hertz' was adopted in the late 19th century after the work of Heinrich Hertz, who first conclusively demonstrated the existence of electromagnetic waves in 1887. Hertz's experiments validated James Clerk Maxwell's electromagnetic theory, which predicted that light and radio waves travel as oscillating electric and magnetic fields. The significance of Hertz’s work led to the establishment of the hertz as a unit of measurement for frequency in the 1930s, formalized by the International Electrotechnical Commission (IEC) in 1930 and further recognized by the General Conference on Weights and Measures (CGPM) in 1960.

Etymology: The term 'hertz' is derived from the last name of Heinrich Hertz, which was adopted as a unit of measurement in honor of his contributions to electromagnetism.

1887: Heinrich Hertz demonstrates el...1930: Hertz is officially adopted as...1960: Hertz is standardized as the S...

Current Use

The hertz is widely utilized across various industries, including telecommunications, audio engineering, and medical equipment. In telecommunications, frequencies are crucial for the transmission of data and signals, with radio frequencies ranging from 3 kHz to 300 GHz being used for broadcasting and wireless communication. In audio engineering, sound frequencies are measured in hertz, with the human auditory range typically between 20 Hz and 20 kHz, impacting music production and sound design. Additionally, in medical imaging, techniques such as MRI utilize radio frequency signals measured in hertz to create detailed images of the body. Countries around the world, including the United States, Germany, and Japan, employ the hertz in various applications, ensuring uniformity in frequency measurements essential for technology and scientific research.

TelecommunicationsAudio EngineeringMedical ImagingConsumer ElectronicsTransportationComputer Science

💡 Fun Facts

  • The hertz is named after Heinrich Hertz, who was the first to conclusively prove the existence of electromagnetic waves.
  • 1 megahertz (MHz) equals 1 million hertz, commonly used to describe radio frequencies.
  • The audible frequency range for humans is approximately 20 Hz to 20 kHz, but this range decreases with age.

📏 Real-World Examples

440 Hz
The frequency of a tuning fork used in music
60 Hz
The refresh rate of a computer monitor
101.1 MHz
The frequency of a radio station
60 Hz
The frequency of a household electrical supply
2.4 GHz
The frequency of a cell phone signal
1 Hz
The natural frequency of a pendulum

🔗 Related Units

Kilohertz (1 kHz = 1,000 Hz)Megahertz (1 MHz = 1,000,000 Hz)Gigahertz (1 GHz = 1,000,000,000 Hz)Cycles per second (1 Hz = 1 cycle/second)Terahertz (1 THz = 1,000,000,000,000 Hz)Nanohertz (1 nHz = 10^-9 Hz)
MHz

Megahertz

frequencyNon-SI

Definition

The megahertz (MHz) is a unit of frequency that is widely used in telecommunications and electronics to denote one million cycles per second. It is part of the International System of Units (SI) and serves as a crucial measure for various applications, including radio frequency, sound waves, and digital signals. In essence, 1 MHz is equivalent to 1,000,000 hertz (Hz), where a hertz is defined as one cycle per second. The concept of frequency is fundamental to understanding wave phenomena, allowing for the quantification of oscillations in various contexts, such as sound, light, and electromagnetic waves. The megahertz scale is particularly significant in radio communications, where it helps in distinguishing between different channels and frequencies.

History & Origin

The term megahertz originated in the early 20th century as radio technology began to evolve. In the 1920s, radio engineers sought a way to quantify and standardize the frequencies used in broadcasting. As radio waves became a primary mode of communication, it became essential to express frequency in terms of manageable units. The prefix 'mega-' is derived from the Greek word 'megas,' meaning 'great' or 'large.' The adoption of the megahertz as a unit of frequency allowed engineers and scientists to effectively categorize and communicate about radio frequencies without resorting to cumbersome numbers that would arise if only hertz were used. This development facilitated the growth of the radio and telecommunications industries.

Etymology: The word 'megahertz' combines the prefix 'mega-', meaning one million, with 'hertz,' named after the German physicist Heinrich Hertz, who made significant contributions to the study of electromagnetic waves.

Current Use

Today, the megahertz is widely used in various industries, including telecommunications, computing, and broadcasting. In the telecommunications sector, frequencies in the megahertz range are essential for radio transmission and reception, enabling devices such as radios, televisions, and mobile phones to operate effectively. For example, FM radio stations typically broadcast in the range of 88 to 108 MHz. In computing, processor speeds are often measured in megahertz, influencing performance; for instance, a 3.0 GHz processor operates at 3000 MHz. Additionally, in the medical field, imaging techniques like MRI utilize megahertz frequencies for imaging the human body, demonstrating the wide applicability of the unit in both everyday technology and advanced scientific applications.

TelecommunicationsComputingBroadcastingMedical ImagingAudio Engineering

💡 Fun Facts

  • The megahertz was first defined in the early 20th century as radio technology developed.
  • One megahertz is equivalent to a million cycles per second, making it a convenient unit for measuring high frequencies.
  • In computing, the transition from megahertz to gigahertz (GHz) signifies a significant leap in processing power.

📏 Real-World Examples

101.1 MHz
FM radio station broadcasting
900 MHz
Cellular network frequency
2800 MHz
Processor speed
550 MHz
Television broadcast frequency
3 MHz
MRI machine operating frequency
2.4 GHz
Wireless communication frequency

🔗 Related Units

Hertz (1 MHz = 10^6 Hz)Gigahertz (1 GHz = 1000 MHz)Kilohertz (1 MHz = 1000 kHz)Terahertz (1 THz = 1000 GHz)Nanohertz (1 MHz = 10^15 nHz)Decahertz (1 MHz = 10^5 dHz)

Frequently Asked Questions

How do I convert to ?

To convert to , multiply your value by 1. For example, 10 equals 10 .

What is the formula for to conversion?

The formula is: = × 1. This conversion factor is based on international standards.

Is this to converter accurate?

Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.

Can I convert back to ?

Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.

Advertisement
AD SPACE - 320x100
BANNER AD - 320x50