MetricConv logo
Home/Converters/Inductance

Henry Converter

Convert Henry to Terahenry and more • 22 conversions

Result

0

1 0
Conversion Formula
1 = ---
Quick Reference
1 = 1
10 = 10
50 = 50
100 = 100
500 = 500
1000 = 1000

Unit Explanations

HenryH

Source Unit

The henry (H) is the SI unit of inductance, which quantifies the ability of a conductor to store energy in a magnetic field when an electric current flows through it. Specifically, one henry is defined as the inductance of a circuit in which a change in current of one ampere per second induces an electromotive force of one volt. This definition underscores the relationship between current, voltage, and inductance, which is critical in understanding electromagnetic phenomena. The henry serves as a fundamental unit in electrical engineering and physics, particularly in the study of circuits, transformers, and inductors. In practical terms, inductance is crucial for the functioning of various electrical and electronic devices, influencing their performance and efficiency.

1 H = 1 VĀ·s/A

Current Use

The henry is widely used in various industries including electronics, electrical engineering, and telecommunications. In electrical engineering, inductors—components that store energy in magnetic fields—are characterized in henries. Devices such as transformers, motors, and generators utilize inductance to function efficiently, making the henry a vital metric in their design and operation. In telecommunications, inductors are used in filters and oscillators to manage signal integrity and frequency response, highlighting the henry's relevance in modern communication systems. Additionally, in the automotive industry, inductance measurements are crucial in the development of electric vehicles, hybrid systems, and advanced driver-assistance systems (ADAS). The henry's application extends globally, with countries such as the United States, members of the European Union, and Japan all employing it in their engineering standards and practices.

Fun Fact

The henry is one of the seven base SI units, underpinning many areas of electrical engineering.

TerahenryTH

Target Unit

The terahenry (TH) is a unit of inductance in the International System of Units (SI) that represents one trillion henries (10^12 H). Inductance is a measure of the ability of a conductor to induce an electromotive force (EMF) in itself or in another conductor due to a change in current. This property is pivotal in various electrical applications, particularly in the design and function of transformers, inductors, and electrical circuits. The terahenry is often utilized in theoretical contexts, as practical inductances in everyday applications rarely reach such high values. In the realm of physics and electrical engineering, understanding inductance and its units is critical for analyzing circuit behavior and electromagnetic fields.

1 TH = 10^12 H

Current Use

While the terahenry is not commonly encountered in everyday applications, it plays a significant role in high-level theoretical discussions and calculations in electrical engineering and physics. For instance, in the design of large-scale inductors used in power generation and transmission systems, inductance values may approach terahenry levels. Additionally, in advanced research settings, such as particle accelerators and high-energy physics experiments, the terahenry can be relevant for modeling magnetic fields and their effects on charged particles. Countries that engage in high-tech industries, including the USA, Japan, Germany, and South Korea, utilize this unit in specialized contexts. Industries such as telecommunications, aerospace, and renewable energy incorporate terahenry values when dealing with high-frequency electromagnetic systems, ensuring that designs can accommodate the complexities of modern technology.

Fun Fact

The terahenry is often used in theoretical calculations rather than practical applications.

Decimals:
Scientific:OFF

Result

0

1
0
Conversion Formula
1 = ...
1→1
10→10
100→100
1000→1000

šŸ“Conversion Formula

= Ɨ 1.00000

How to Convert

To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.

Quick Examples

1
=
1.000
10
=
10.00
100
=
100.0

šŸ’” Pro Tip: For the reverse conversion ( → ), divide by the conversion factor instead of multiplying.

H

Henry

inductance • SI Unit

Definition

The henry (H) is the SI unit of inductance, which quantifies the ability of a conductor to store energy in a magnetic field when an electric current flows through it. Specifically, one henry is defined as the inductance of a circuit in which a change in current of one ampere per second induces an electromotive force of one volt. This definition underscores the relationship between current, voltage, and inductance, which is critical in understanding electromagnetic phenomena. The henry serves as a fundamental unit in electrical engineering and physics, particularly in the study of circuits, transformers, and inductors. In practical terms, inductance is crucial for the functioning of various electrical and electronic devices, influencing their performance and efficiency.

History & Origin

The unit 'henry' was officially adopted in 1861 during the establishment of the International System of Units (SI). It was named in honor of Joseph Henry, an American scientist who made significant contributions to the understanding of electromagnetism and induction. Henry's pioneering work laid the foundations for many modern electrical technologies and his discoveries regarding self-induction and mutual induction were crucial in the development of the field. His experiments demonstrated how a change in current could induce a magnetic field, which formed the basis for the concept of inductance that the henry quantifies.

Etymology: The term 'henry' is derived from the name of Joseph Henry, reflecting the honor bestowed upon him for his groundbreaking contributions to electromagnetism.

1861: The henry is named after Josep...1960: The henry is officially includ...

Current Use

The henry is widely used in various industries including electronics, electrical engineering, and telecommunications. In electrical engineering, inductors—components that store energy in magnetic fields—are characterized in henries. Devices such as transformers, motors, and generators utilize inductance to function efficiently, making the henry a vital metric in their design and operation. In telecommunications, inductors are used in filters and oscillators to manage signal integrity and frequency response, highlighting the henry's relevance in modern communication systems. Additionally, in the automotive industry, inductance measurements are crucial in the development of electric vehicles, hybrid systems, and advanced driver-assistance systems (ADAS). The henry's application extends globally, with countries such as the United States, members of the European Union, and Japan all employing it in their engineering standards and practices.

ElectronicsElectrical EngineeringTelecommunicationsAutomotiveEnergyAerospace

šŸ’” Fun Facts

  • •The henry is one of the seven base SI units, underpinning many areas of electrical engineering.
  • •Joseph Henry discovered self-induction independently of Michael Faraday, demonstrating his key role in electromagnetism.
  • •Inductance can be affected by the physical arrangement of coils, such as their number of turns and proximity to magnetic materials.

šŸ“ Real-World Examples

10 H
An inductor in a power supply circuit that has a rated inductance of 10 H.
2 H
A transformer used in a power transmission system with a primary inductance of 2 H.
0.5 H
An electric motor with an inductance of 0.5 H affecting its performance.
0.000025 H
A radio transmitter utilizing a tuned circuit with inductance of 25 μH.
1 H
A wireless charging pad with inductors rated at 1 H to optimize energy transfer.
15 H
An electric vehicle's inductor rated at 15 H used in regenerative braking systems.

šŸ”— Related Units

Volt (Voltage induced per change of current.)Farad (Capacitance, related through the impedance in AC circuits.)Ohm (Resistance, affecting the current induced in inductive circuits.)Tesla (Magnetic flux density, influencing inductance.)Ampere (Current, fundamental to the definition of inductance.)Henry (Self-inductance, the unit itself.)
TH

Terahenry

inductance • Non-SI

Definition

The terahenry (TH) is a unit of inductance in the International System of Units (SI) that represents one trillion henries (10^12 H). Inductance is a measure of the ability of a conductor to induce an electromotive force (EMF) in itself or in another conductor due to a change in current. This property is pivotal in various electrical applications, particularly in the design and function of transformers, inductors, and electrical circuits. The terahenry is often utilized in theoretical contexts, as practical inductances in everyday applications rarely reach such high values. In the realm of physics and electrical engineering, understanding inductance and its units is critical for analyzing circuit behavior and electromagnetic fields.

History & Origin

The concept of inductance was first introduced by Michael Faraday in the 1830s through his experiments with electromagnetic induction. He demonstrated that a changing magnetic field could induce an electromotive force in a conductor, laying the groundwork for the development of inductance as a concept. The henry, named after Joseph Henry, was established as the standard unit of inductance in 1861. The terahenry was later introduced to accommodate the increasing complexity and scale of modern electrical systems, requiring units that could express very large inductance values. The adoption of SI units in the 20th century further solidified the terahenry's place in metrology.

Etymology: The term 'terahenry' combines the prefix 'tera-', which denotes a factor of 10^12, with 'henry', named after Joseph Henry, an American scientist known for his work in electromagnetism.

1861: The henry is defined as the un...1960: The terahenry is introduced as...

Current Use

While the terahenry is not commonly encountered in everyday applications, it plays a significant role in high-level theoretical discussions and calculations in electrical engineering and physics. For instance, in the design of large-scale inductors used in power generation and transmission systems, inductance values may approach terahenry levels. Additionally, in advanced research settings, such as particle accelerators and high-energy physics experiments, the terahenry can be relevant for modeling magnetic fields and their effects on charged particles. Countries that engage in high-tech industries, including the USA, Japan, Germany, and South Korea, utilize this unit in specialized contexts. Industries such as telecommunications, aerospace, and renewable energy incorporate terahenry values when dealing with high-frequency electromagnetic systems, ensuring that designs can accommodate the complexities of modern technology.

TelecommunicationsAerospaceRenewable EnergyElectronicsHigh-Energy Physics

šŸ’” Fun Facts

  • •The terahenry is often used in theoretical calculations rather than practical applications.
  • •Inductance values in the terahenry range are primarily found in advanced engineering and physics.
  • •Joseph Henry, after whom the henry is named, was a contemporary of Faraday but independently discovered electromagnetic induction.

šŸ“ Real-World Examples

1 TH
Inductor in a high-frequency transformer
1.5 TH
Magnetic storage in a particle accelerator
2 TH
Inductance in large power transmission lines
0.75 TH
High-energy applications in aerospace systems
0.3 TH
Modeling inductance in electric vehicles
0.5 TH
Induction heating systems

šŸ”— Related Units

Henry (1 TH = 10^12 H)Millihenry (1 TH = 10^15 mH)Microhenry (1 TH = 10^18 µH)Nanohenry (1 TH = 10^21 nH)Picohenry (1 TH = 10^24 pH)Decihenry (1 TH = 10^11 dH)

Frequently Asked Questions

How do I convert to ?ā–¼

To convert to , multiply your value by 1. For example, 10 equals 10 .

What is the formula for to conversion?ā–¼

The formula is: = Ɨ 1. This conversion factor is based on international standards.

Is this to converter accurate?ā–¼

Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.

Can I convert back to ?ā–¼

Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.

Advertisement
AD SPACE - 320x100
BANNER AD - 320x50