MetricConv logo
Home/Converters/Inductance

Henry Converter

Convert Henry to Millihenry and more • 22 conversions

Result

0

1 0
Conversion Formula
1 = ---
Quick Reference
1 = 1
10 = 10
50 = 50
100 = 100
500 = 500
1000 = 1000

Unit Explanations

HenryH

Source Unit

The henry (H) is the SI unit of inductance, which quantifies the ability of a conductor to store energy in a magnetic field when an electric current flows through it. Specifically, one henry is defined as the inductance of a circuit in which a change in current of one ampere per second induces an electromotive force of one volt. This definition underscores the relationship between current, voltage, and inductance, which is critical in understanding electromagnetic phenomena. The henry serves as a fundamental unit in electrical engineering and physics, particularly in the study of circuits, transformers, and inductors. In practical terms, inductance is crucial for the functioning of various electrical and electronic devices, influencing their performance and efficiency.

1 H = 1 VĀ·s/A

Current Use

The henry is widely used in various industries including electronics, electrical engineering, and telecommunications. In electrical engineering, inductors—components that store energy in magnetic fields—are characterized in henries. Devices such as transformers, motors, and generators utilize inductance to function efficiently, making the henry a vital metric in their design and operation. In telecommunications, inductors are used in filters and oscillators to manage signal integrity and frequency response, highlighting the henry's relevance in modern communication systems. Additionally, in the automotive industry, inductance measurements are crucial in the development of electric vehicles, hybrid systems, and advanced driver-assistance systems (ADAS). The henry's application extends globally, with countries such as the United States, members of the European Union, and Japan all employing it in their engineering standards and practices.

Fun Fact

The henry is one of the seven base SI units, underpinning many areas of electrical engineering.

MillihenrymH

Target Unit

The millihenry (mH) is a derived unit of inductance in the International System of Units (SI), representing one thousandth of a henry (H). It quantifies the ability of a conductor to induce electromotive force (EMF) when the current flowing through it changes. Inductance is a fundamental property in electrical engineering and physics, underlying the principles of electromagnetism. The relationship between inductance and magnetic flux linkage is critical in the design of electrical circuits, transformers, and inductors. The millihenry is widely used in various applications where smaller inductance values are required, making it an essential unit in electronics and electrical engineering.

L = N * Φ / I

Current Use

The millihenry is widely utilized in various industries, particularly in electronics, telecommunications, and automotive engineering. In circuit design, millihenries are often employed to specify the inductance of inductors and transformers, particularly in applications requiring compact components with precise inductive values. Electronics manufacturers, engineers, and hobbyists rely on millihenries for designing filters, oscillators, and power supplies. Countries such as the United States, Japan, Germany, and South Korea prominently use this unit in educational settings, research, and practical applications. The rise of portable electronics and high-frequency applications has further solidified the importance of millihenries in modern electrical engineering.

Fun Fact

The henry, the base unit of inductance, is named after Joseph Henry, who also discovered self-induction.

Decimals:
Scientific:OFF

Result

0

1
0
Conversion Formula
1 = ...
1→1
10→10
100→100
1000→1000

šŸ“Conversion Formula

= Ɨ 1.00000

How to Convert

To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.

Quick Examples

1
=
1.000
10
=
10.00
100
=
100.0

šŸ’” Pro Tip: For the reverse conversion ( → ), divide by the conversion factor instead of multiplying.

H

Henry

inductance • SI Unit

Definition

The henry (H) is the SI unit of inductance, which quantifies the ability of a conductor to store energy in a magnetic field when an electric current flows through it. Specifically, one henry is defined as the inductance of a circuit in which a change in current of one ampere per second induces an electromotive force of one volt. This definition underscores the relationship between current, voltage, and inductance, which is critical in understanding electromagnetic phenomena. The henry serves as a fundamental unit in electrical engineering and physics, particularly in the study of circuits, transformers, and inductors. In practical terms, inductance is crucial for the functioning of various electrical and electronic devices, influencing their performance and efficiency.

History & Origin

The unit 'henry' was officially adopted in 1861 during the establishment of the International System of Units (SI). It was named in honor of Joseph Henry, an American scientist who made significant contributions to the understanding of electromagnetism and induction. Henry's pioneering work laid the foundations for many modern electrical technologies and his discoveries regarding self-induction and mutual induction were crucial in the development of the field. His experiments demonstrated how a change in current could induce a magnetic field, which formed the basis for the concept of inductance that the henry quantifies.

Etymology: The term 'henry' is derived from the name of Joseph Henry, reflecting the honor bestowed upon him for his groundbreaking contributions to electromagnetism.

1861: The henry is named after Josep...1960: The henry is officially includ...

Current Use

The henry is widely used in various industries including electronics, electrical engineering, and telecommunications. In electrical engineering, inductors—components that store energy in magnetic fields—are characterized in henries. Devices such as transformers, motors, and generators utilize inductance to function efficiently, making the henry a vital metric in their design and operation. In telecommunications, inductors are used in filters and oscillators to manage signal integrity and frequency response, highlighting the henry's relevance in modern communication systems. Additionally, in the automotive industry, inductance measurements are crucial in the development of electric vehicles, hybrid systems, and advanced driver-assistance systems (ADAS). The henry's application extends globally, with countries such as the United States, members of the European Union, and Japan all employing it in their engineering standards and practices.

ElectronicsElectrical EngineeringTelecommunicationsAutomotiveEnergyAerospace

šŸ’” Fun Facts

  • •The henry is one of the seven base SI units, underpinning many areas of electrical engineering.
  • •Joseph Henry discovered self-induction independently of Michael Faraday, demonstrating his key role in electromagnetism.
  • •Inductance can be affected by the physical arrangement of coils, such as their number of turns and proximity to magnetic materials.

šŸ“ Real-World Examples

10 H
An inductor in a power supply circuit that has a rated inductance of 10 H.
2 H
A transformer used in a power transmission system with a primary inductance of 2 H.
0.5 H
An electric motor with an inductance of 0.5 H affecting its performance.
0.000025 H
A radio transmitter utilizing a tuned circuit with inductance of 25 μH.
1 H
A wireless charging pad with inductors rated at 1 H to optimize energy transfer.
15 H
An electric vehicle's inductor rated at 15 H used in regenerative braking systems.

šŸ”— Related Units

Volt (Voltage induced per change of current.)Farad (Capacitance, related through the impedance in AC circuits.)Ohm (Resistance, affecting the current induced in inductive circuits.)Tesla (Magnetic flux density, influencing inductance.)Ampere (Current, fundamental to the definition of inductance.)Henry (Self-inductance, the unit itself.)
mH

Millihenry

inductance • Non-SI

Definition

The millihenry (mH) is a derived unit of inductance in the International System of Units (SI), representing one thousandth of a henry (H). It quantifies the ability of a conductor to induce electromotive force (EMF) when the current flowing through it changes. Inductance is a fundamental property in electrical engineering and physics, underlying the principles of electromagnetism. The relationship between inductance and magnetic flux linkage is critical in the design of electrical circuits, transformers, and inductors. The millihenry is widely used in various applications where smaller inductance values are required, making it an essential unit in electronics and electrical engineering.

History & Origin

The concept of inductance, and consequently units like the henry and its submultiples, emerged from the work of several physicists in the 19th century. Particularly, Joseph Henry, an American scientist, played a pivotal role in the discovery of self-induction and mutual induction. His experiments demonstrated how a change in current in a coil could induce an electromotive force in the same coil or in a nearby coil. This foundational work laid the groundwork for electromagnetic theory and the development of inductive components. The millihenry, as a practical subunit, became widely adopted as electronic components grew smaller and more complex, facilitating its use in modern circuit design.

Etymology: The term 'millihenry' derives from the prefix 'milli-', meaning one thousandth, combined with 'henry', named after Joseph Henry.

1831: Joseph Henry discovers self-in...1861: Unit of inductance named in ho...1960: Millihenry becomes an accepted...

Current Use

The millihenry is widely utilized in various industries, particularly in electronics, telecommunications, and automotive engineering. In circuit design, millihenries are often employed to specify the inductance of inductors and transformers, particularly in applications requiring compact components with precise inductive values. Electronics manufacturers, engineers, and hobbyists rely on millihenries for designing filters, oscillators, and power supplies. Countries such as the United States, Japan, Germany, and South Korea prominently use this unit in educational settings, research, and practical applications. The rise of portable electronics and high-frequency applications has further solidified the importance of millihenries in modern electrical engineering.

ElectronicsTelecommunicationsAutomotiveAerospace

šŸ’” Fun Facts

  • •The henry, the base unit of inductance, is named after Joseph Henry, who also discovered self-induction.
  • •Inductors are commonly used in radio circuits to tune into specific frequencies.
  • •The millihenry is often used in small, efficient electronic devices, such as smartphones and tablets.

šŸ“ Real-World Examples

10 mH
An inductor in an RF circuit operating at 100 MHz
4.7 mH
A power supply filter in a DC-DC converter
1 mH
A transformer in a low-voltage application
2.2 mH
Inductor in a car audio system
0.47 mH
Coil in a wireless charging pad
15 mH
Inductor used in a switching regulator

šŸ”— Related Units

Henry (1 H = 1000 mH)Microhenry (1 mH = 1000 µH)Nanohenry (1 mH = 1000000 nH)Farad (Inductance and capacitance are related in LC circuits.)Ohm (Inductance is involved in the impedance of a circuit.)Volt (Inductance is related to voltage induced due to changing current.)

Frequently Asked Questions

How do I convert to ?ā–¼

To convert to , multiply your value by 1. For example, 10 equals 10 .

What is the formula for to conversion?ā–¼

The formula is: = Ɨ 1. This conversion factor is based on international standards.

Is this to converter accurate?ā–¼

Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.

Can I convert back to ?ā–¼

Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.

Advertisement
AD SPACE - 320x100
BANNER AD - 320x50