Convert Gray to Picocurie and more • 73 conversions
0
The gray (Gy) is the SI derived unit of absorbed dose of ionizing radiation, defined as the absorption of one joule of radiation energy by one kilogram of matter. It quantifies the amount of energy deposited by radiation in a specified mass of material, which in biological contexts is often human tissue. The gray is crucial in assessing radiation exposure and its potential biological effects, and it serves as a fundamental unit in radiation safety and protection protocols.
The gray is widely used in medical fields, particularly in radiation therapy for cancer treatment, where precise dosages are critical for effective treatment while minimizing damage to surrounding healthy tissue. It is also employed in radiological assessments, nuclear power, and safety protocols for radiation workers. Various international organizations, including the International Atomic Energy Agency (IAEA), utilize the gray for consistent communication regarding radiation exposure levels.
The gray is equivalent to 100 rad, an older unit of absorbed dose.
The picocurie (pCi) is a non-SI unit of radioactivity defined as one trillionth of a curie (1 pCi = 10^-12 Ci). It quantifies the amount of radioactivity present in a sample, specifically the number of disintegrations per minute (dpm) caused by radioactive decay. The curie was originally based on the radioactivity of one gram of radium-226 and was named after physicists Marie and Pierre Curie. The picocurie is often used in health physics, environmental monitoring, and nuclear medicine to measure low levels of radioactivity in samples such as air, water, and biological tissues.
Picocuries are widely used in nuclear medicine, environmental monitoring, and health physics. In nuclear medicine, pCi values help quantify the amount of radioactivity in diagnostic and therapeutic applications, allowing for precise dosing. Environmental scientists utilize picocuries to measure contamination levels in soil and water, ensuring safety standards are met. Regulatory agencies often set permissible exposure limits based on pCi measurements, emphasizing its importance in public health.
The curie unit was named after Marie Curie, the first woman to win a Nobel Prize.
= × 1.00000To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.
💡 Pro Tip: For the reverse conversion ( → ), divide by the conversion factor instead of multiplying.
radiation • SI Unit
The gray (Gy) is the SI derived unit of absorbed dose of ionizing radiation, defined as the absorption of one joule of radiation energy by one kilogram of matter. It quantifies the amount of energy deposited by radiation in a specified mass of material, which in biological contexts is often human tissue. The gray is crucial in assessing radiation exposure and its potential biological effects, and it serves as a fundamental unit in radiation safety and protection protocols.
The gray was introduced in 1975 by the International System of Units (SI) as the unit of absorbed dose to provide a standardized measurement for radiation exposure. Its creation was a response to the need for a unified system that could facilitate consistency in scientific research and practical applications in radiology, nuclear medicine, and radiation therapy.
Etymology: The unit is named after the British physicist Louis Harold Gray, who made significant contributions to the field of radiation therapy and the study of radiation's effects on biological tissue.
The gray is widely used in medical fields, particularly in radiation therapy for cancer treatment, where precise dosages are critical for effective treatment while minimizing damage to surrounding healthy tissue. It is also employed in radiological assessments, nuclear power, and safety protocols for radiation workers. Various international organizations, including the International Atomic Energy Agency (IAEA), utilize the gray for consistent communication regarding radiation exposure levels.
radiation • Non-SI
The picocurie (pCi) is a non-SI unit of radioactivity defined as one trillionth of a curie (1 pCi = 10^-12 Ci). It quantifies the amount of radioactivity present in a sample, specifically the number of disintegrations per minute (dpm) caused by radioactive decay. The curie was originally based on the radioactivity of one gram of radium-226 and was named after physicists Marie and Pierre Curie. The picocurie is often used in health physics, environmental monitoring, and nuclear medicine to measure low levels of radioactivity in samples such as air, water, and biological tissues.
The picocurie was introduced in the mid-20th century as a more manageable unit of measurement for radioactivity, especially in contexts where low-level radiation is prevalent. Its association with the curie, which was named after the pioneering physicists Marie and Pierre Curie who conducted extensive research on radioactivity, established a foundational understanding of radioactive materials. The need for more precise measurements in various scientific and medical fields led to the adoption of smaller units such as the picocurie.
Etymology: The term 'picocurie' derives from the prefix 'pico-', which means one trillionth (10^-12) in the International System of Units (SI), combined with 'curie,' which is a unit of radioactivity.
Picocuries are widely used in nuclear medicine, environmental monitoring, and health physics. In nuclear medicine, pCi values help quantify the amount of radioactivity in diagnostic and therapeutic applications, allowing for precise dosing. Environmental scientists utilize picocuries to measure contamination levels in soil and water, ensuring safety standards are met. Regulatory agencies often set permissible exposure limits based on pCi measurements, emphasizing its importance in public health.
Explore more radiation conversions for your calculations.
To convert to , multiply your value by 1. For example, 10 equals 10 .
The formula is: = × 1. This conversion factor is based on international standards.
Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.
Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.