Convert Gray to Kilobecquerel and more • 73 conversions
0
The gray (Gy) is the SI derived unit of absorbed dose of ionizing radiation, defined as the absorption of one joule of radiation energy by one kilogram of matter. It quantifies the amount of energy deposited by radiation in a specified mass of material, which in biological contexts is often human tissue. The gray is crucial in assessing radiation exposure and its potential biological effects, and it serves as a fundamental unit in radiation safety and protection protocols.
The gray is widely used in medical fields, particularly in radiation therapy for cancer treatment, where precise dosages are critical for effective treatment while minimizing damage to surrounding healthy tissue. It is also employed in radiological assessments, nuclear power, and safety protocols for radiation workers. Various international organizations, including the International Atomic Energy Agency (IAEA), utilize the gray for consistent communication regarding radiation exposure levels.
The gray is equivalent to 100 rad, an older unit of absorbed dose.
The kilobecquerel (kBq) is a derived unit of radioactivity in the International System of Units (SI), defined as one thousand disintegrations per second. It quantifies the amount of radioactive decay occurring in a given sample, providing a measure of its radioactivity. The unit is named after the French physicist Henri Becquerel, who discovered radioactivity in 1896. The kilobecquerel serves as a practical scale for measuring low levels of radioactivity, making it significant in medical, environmental, and industrial applications.
The kilobecquerel is commonly used in medical applications, particularly in radiopharmaceuticals for diagnosis and treatment. It is also utilized in environmental science to measure the levels of radioactive contamination in soil, water, and air. Additionally, industries involved in nuclear energy, waste management, and radiation safety rely on the kilobecquerel to assess and report radioactivity levels. Its use is prevalent in many countries, including those with nuclear power plants and medical facilities that utilize radioactive materials.
The becquerel was adopted as an SI unit only 79 years after Henri Becquerel's discovery of radioactivity.
= × 1.00000To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.
💡 Pro Tip: For the reverse conversion ( → ), divide by the conversion factor instead of multiplying.
radiation • SI Unit
The gray (Gy) is the SI derived unit of absorbed dose of ionizing radiation, defined as the absorption of one joule of radiation energy by one kilogram of matter. It quantifies the amount of energy deposited by radiation in a specified mass of material, which in biological contexts is often human tissue. The gray is crucial in assessing radiation exposure and its potential biological effects, and it serves as a fundamental unit in radiation safety and protection protocols.
The gray was introduced in 1975 by the International System of Units (SI) as the unit of absorbed dose to provide a standardized measurement for radiation exposure. Its creation was a response to the need for a unified system that could facilitate consistency in scientific research and practical applications in radiology, nuclear medicine, and radiation therapy.
Etymology: The unit is named after the British physicist Louis Harold Gray, who made significant contributions to the field of radiation therapy and the study of radiation's effects on biological tissue.
The gray is widely used in medical fields, particularly in radiation therapy for cancer treatment, where precise dosages are critical for effective treatment while minimizing damage to surrounding healthy tissue. It is also employed in radiological assessments, nuclear power, and safety protocols for radiation workers. Various international organizations, including the International Atomic Energy Agency (IAEA), utilize the gray for consistent communication regarding radiation exposure levels.
radiation • Non-SI
The kilobecquerel (kBq) is a derived unit of radioactivity in the International System of Units (SI), defined as one thousand disintegrations per second. It quantifies the amount of radioactive decay occurring in a given sample, providing a measure of its radioactivity. The unit is named after the French physicist Henri Becquerel, who discovered radioactivity in 1896. The kilobecquerel serves as a practical scale for measuring low levels of radioactivity, making it significant in medical, environmental, and industrial applications.
The concept of measuring radioactivity began with Henri Becquerel's discovery of natural radioactivity in 1896, which led to the development of units to quantify radioactive decay. The becquerel (Bq) was established as the SI unit for radioactivity in 1975, named in honor of Becquerel's contributions. The kilobecquerel was later introduced as a practical multiple of the becquerel for measuring larger quantities of radioactivity, facilitating easier communication and understanding in scientific and medical fields.
Etymology: The term 'kilobecquerel' is derived from the name of Henri Becquerel, combined with the prefix 'kilo-', which denotes a factor of one thousand.
The kilobecquerel is commonly used in medical applications, particularly in radiopharmaceuticals for diagnosis and treatment. It is also utilized in environmental science to measure the levels of radioactive contamination in soil, water, and air. Additionally, industries involved in nuclear energy, waste management, and radiation safety rely on the kilobecquerel to assess and report radioactivity levels. Its use is prevalent in many countries, including those with nuclear power plants and medical facilities that utilize radioactive materials.
Explore more radiation conversions for your calculations.
To convert to , multiply your value by 1. For example, 10 equals 10 .
The formula is: = × 1. This conversion factor is based on international standards.
Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.
Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.