MetricConv logo
Home/Converters/Radiation

Gray Converter

Convert Gray to Gigabecquerel and more • 73 conversions

Result

0

1 0
Conversion Formula
1 = ---
Quick Reference
1 = 1
10 = 10
50 = 50
100 = 100
500 = 500
1000 = 1000

Unit Explanations

GrayGy

Source Unit

The gray (Gy) is the SI derived unit of absorbed dose of ionizing radiation, defined as the absorption of one joule of radiation energy by one kilogram of matter. It quantifies the amount of energy deposited by radiation in a specified mass of material, which in biological contexts is often human tissue. The gray is crucial in assessing radiation exposure and its potential biological effects, and it serves as a fundamental unit in radiation safety and protection protocols.

1 Gy = 1 J/kg

Current Use

The gray is widely used in medical fields, particularly in radiation therapy for cancer treatment, where precise dosages are critical for effective treatment while minimizing damage to surrounding healthy tissue. It is also employed in radiological assessments, nuclear power, and safety protocols for radiation workers. Various international organizations, including the International Atomic Energy Agency (IAEA), utilize the gray for consistent communication regarding radiation exposure levels.

Fun Fact

The gray is equivalent to 100 rad, an older unit of absorbed dose.

GigabecquerelGBq

Target Unit

The gigabecquerel (GBq) is a derived unit of radioactivity in the International System of Units (SI), defined as 10^9 (one billion) disintegrations or decays per second. It measures the rate at which a radioactive source emits radiation, reflecting the intensity of radioactivity. The becquerel (Bq), the SI base unit from which the gigabecquerel is derived, is named after the French physicist Henri Becquerel, who discovered radioactivity in 1896. The gigabecquerel is used to quantify large amounts of radioactive material, making it particularly useful in nuclear medicine, research, and industry.

1 GBq = 10^9 Bq

Current Use

Currently, the gigabecquerel is extensively used in medical diagnostics and treatment, particularly in nuclear medicine where it quantifies the radioactivity of radiopharmaceuticals. It is essential for determining safe doses in patient treatments and ensuring compliance with safety regulations. Additionally, it is used in environmental monitoring to measure contamination levels.

Fun Fact

The gigabecquerel is equivalent to 1 billion disintegrations per second, which makes it a practical unit for measuring high levels of radioactivity.

Decimals:
Scientific:OFF

Result

0

1
0
Conversion Formula
1 = ...
1→1
10→10
100→100
1000→1000

📐Conversion Formula

= × 1.00000

How to Convert

To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.

Quick Examples

1
=
1.000
10
=
10.00
100
=
100.0

💡 Pro Tip: For the reverse conversion (), divide by the conversion factor instead of multiplying.

Gy

Gray

radiationSI Unit

Definition

The gray (Gy) is the SI derived unit of absorbed dose of ionizing radiation, defined as the absorption of one joule of radiation energy by one kilogram of matter. It quantifies the amount of energy deposited by radiation in a specified mass of material, which in biological contexts is often human tissue. The gray is crucial in assessing radiation exposure and its potential biological effects, and it serves as a fundamental unit in radiation safety and protection protocols.

History & Origin

The gray was introduced in 1975 by the International System of Units (SI) as the unit of absorbed dose to provide a standardized measurement for radiation exposure. Its creation was a response to the need for a unified system that could facilitate consistency in scientific research and practical applications in radiology, nuclear medicine, and radiation therapy.

Etymology: The unit is named after the British physicist Louis Harold Gray, who made significant contributions to the field of radiation therapy and the study of radiation's effects on biological tissue.

1975: The gray is officially adopted...

Current Use

The gray is widely used in medical fields, particularly in radiation therapy for cancer treatment, where precise dosages are critical for effective treatment while minimizing damage to surrounding healthy tissue. It is also employed in radiological assessments, nuclear power, and safety protocols for radiation workers. Various international organizations, including the International Atomic Energy Agency (IAEA), utilize the gray for consistent communication regarding radiation exposure levels.

HealthcareNuclear EnergyRadiologyEnvironmental Science

💡 Fun Facts

  • The gray is equivalent to 100 rad, an older unit of absorbed dose.
  • The gray is used in radiation therapy to ensure that the cancerous tissue receives a lethal dose while surrounding healthy tissue receives a much lower dose.
  • Louis Harold Gray was the first scientist to quantify the effects of radiation on living tissue, leading to advancements in cancer treatment.

📏 Real-World Examples

2 Gy
A patient receives a single dose of radiation for cancer treatment.
20 Gy
A radiation worker's annual limit for radiation exposure is set.
10 mGy
Diagnostic imaging procedures, such as CT scans, expose patients to radiation.
1.5 Gy
Radiation therapy for a thyroid condition requires a specific dose.
0.5 Gy
Environmental evaluations assess radiation levels after a nuclear accident.

🔗 Related Units

Rad (1 Gy = 100 rad)Rem (1 Gy = 100 rem (in terms of biological effect depending on radiation type))Sievert (1 Sv = 1 Gy for photons; used for equivalent dose measurement.)Joule (1 Gy is defined as 1 J/kg, linking it to energy absorption.)
GBq

Gigabecquerel

radiationNon-SI

Definition

The gigabecquerel (GBq) is a derived unit of radioactivity in the International System of Units (SI), defined as 10^9 (one billion) disintegrations or decays per second. It measures the rate at which a radioactive source emits radiation, reflecting the intensity of radioactivity. The becquerel (Bq), the SI base unit from which the gigabecquerel is derived, is named after the French physicist Henri Becquerel, who discovered radioactivity in 1896. The gigabecquerel is used to quantify large amounts of radioactive material, making it particularly useful in nuclear medicine, research, and industry.

History & Origin

The gigabecquerel originates from the need to measure large quantities of radioactivity, particularly in fields like medicine and nuclear physics. It was established as a coherent unit within the SI system to ensure uniformity in reporting radioactivity.

Etymology: The term 'becquerel' is derived from the name of physicist Henri Becquerel, who was awarded the Nobel Prize in Physics in 1903 for his discovery of radioactivity.

1959: The gigabecquerel was defined ...

Current Use

Currently, the gigabecquerel is extensively used in medical diagnostics and treatment, particularly in nuclear medicine where it quantifies the radioactivity of radiopharmaceuticals. It is essential for determining safe doses in patient treatments and ensuring compliance with safety regulations. Additionally, it is used in environmental monitoring to measure contamination levels.

Nuclear MedicineResearchNuclear EnergyRadiological Protection

💡 Fun Facts

  • The gigabecquerel is equivalent to 1 billion disintegrations per second, which makes it a practical unit for measuring high levels of radioactivity.
  • Henri Becquerel discovered radioactivity accidentally while studying phosphorescent materials, leading to groundbreaking developments in nuclear science.
  • The use of the gigabecquerel in medical applications allows for precise dosages that enhance the efficacy of treatments while minimizing patient exposure.

📏 Real-World Examples

10 GBq
A medical facility uses 10 GBq of a radioactive tracer for PET scans.
250 GBq
A research lab measures a sample with an activity of 250 GBq to study its properties.
5000 GBq
In a nuclear power plant, the waste contains 5,000 GBq of radioactivity.
50 GBq
Environmental monitoring detects a contamination level of 50 GBq in a water sample.
30 GBq
A patient receives a treatment dose of 30 GBq of iodine-131 for thyroid cancer.

🔗 Related Units

Becquerel (1 GBq = 10^9 Bq)Curie (1 Ci = 37 billion Bq; 1 GBq = 0.027 Ci)Megabecquerel (1 GBq = 1,000 MBq)Terabecquerel (1 TBq = 1,000 GBq)

Frequently Asked Questions

How do I convert to ?

To convert to , multiply your value by 1. For example, 10 equals 10 .

What is the formula for to conversion?

The formula is: = × 1. This conversion factor is based on international standards.

Is this to converter accurate?

Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.

Can I convert back to ?

Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.

Advertisement
AD SPACE - 320x100
BANNER AD - 320x50