MetricConv logo
Home/Converters/Specific

Cubic Centimeter Gram Converter

Convert Cubic Centimeter Gram to Cubic Meter Kilogram and more • 47 conversions

Result

0

1 0
Conversion Formula
1 = ---
Quick Reference
1 = 1
10 = 10
50 = 50
100 = 100
500 = 500
1000 = 1000

Unit Explanations

Cubic Centimeter Gramcm³/g

Source Unit

The cubic centimeter gram (cm³/g) is a unit of density that expresses the mass of a substance in grams contained in one cubic centimeter of volume. This measurement is crucial in various scientific and industrial applications, as it provides a direct ratio of mass to volume. It allows scientists and engineers to understand how much matter is contained within a given space, which is essential for calculations in chemistry, materials science, and engineering. Given that 1 cm³ of water at 4°C has a mass of approximately 1 gram, the cubic centimeter gram provides a convenient reference point for comparing the densities of various substances.

Density (ρ) = mass (m) / volume (V)

Current Use

Today, the cubic centimeter gram is used across various fields such as chemistry, biology, and engineering for precise measurements of density. It is vital in laboratory settings where accurate density calculations are required for experiments and product formulations. Additionally, it is commonly used in industries such as pharmaceuticals, food science, and materials testing to ensure quality control and compliance with safety standards.

Fun Fact

The cubic centimeter is often used interchangeably with milliliter, where 1 cm³ equals 1 mL.

Cubic Meter Kilogramm³/kg

Target Unit

The cubic meter kilogram is a derived unit of specific volume, defined as the volume occupied by one kilogram of a substance. It is derived from the cubic meter, a unit of volume in the International System of Units (SI), and the kilogram, the base unit of mass. Specific volume expresses how much space a unit mass of a material occupies, which is crucial in various scientific and engineering applications. This unit is particularly relevant in fields such as thermodynamics, fluid mechanics, and material science, where understanding the relationship between mass and volume is essential for calculations and design.

specific volume (ν) = volume (V) / mass (m)

Current Use

Cubic meter kilograms are widely used in engineering, physics, and environmental sciences to describe the specific volume of materials, especially gases and liquids. In industries such as HVAC, chemical engineering, and hydrology, this unit helps in designing equipment and understanding fluid dynamics. Specific volume is critical for calculating buoyancy, flow rates, and thermal properties, making it an essential parameter in many scientific and industrial applications.

Fun Fact

The specific volume of gases varies significantly with pressure and temperature, unlike liquids and solids which are generally incompressible.

Decimals:
Scientific:OFF

Result

0

1
0
Conversion Formula
1 = ...
1→1
10→10
100→100
1000→1000

📐Conversion Formula

= × 1.00000

How to Convert

To convert to , multiply the value by 1.00000. This conversion factor represents the ratio between these two units.

Quick Examples

1
=
1.000
10
=
10.00
100
=
100.0

💡 Pro Tip: For the reverse conversion (), divide by the conversion factor instead of multiplying.

cm³/g

Cubic Centimeter Gram

specificNon-SI

Definition

The cubic centimeter gram (cm³/g) is a unit of density that expresses the mass of a substance in grams contained in one cubic centimeter of volume. This measurement is crucial in various scientific and industrial applications, as it provides a direct ratio of mass to volume. It allows scientists and engineers to understand how much matter is contained within a given space, which is essential for calculations in chemistry, materials science, and engineering. Given that 1 cm³ of water at 4°C has a mass of approximately 1 gram, the cubic centimeter gram provides a convenient reference point for comparing the densities of various substances.

History & Origin

The concept of measuring density using cubic centimeters and grams can be traced back to early scientific explorations in the 18th century. The metric system was established in France in the late 1700s, providing a standardized framework for measurement. The cubic centimeter, as a metric volume unit, became widely accepted by the 19th century, while the gram was defined based on the mass of one cubic centimeter of water. This historical development allowed for the effective communication of scientific measurements across Europe and later the world.

Etymology: The term 'cubic centimeter' derives from the Latin 'cubicus' meaning 'cube' and 'centimeter' from 'centi-' meaning 'one hundredth' and 'metrum' meaning 'measure'. 'Gram' is derived from the Greek word 'gramma', meaning 'something written' or 'a small weight'.

1795: The metric system was official...1960: The International System of Un...

Current Use

Today, the cubic centimeter gram is used across various fields such as chemistry, biology, and engineering for precise measurements of density. It is vital in laboratory settings where accurate density calculations are required for experiments and product formulations. Additionally, it is commonly used in industries such as pharmaceuticals, food science, and materials testing to ensure quality control and compliance with safety standards.

ChemistryFood SciencePharmaceuticalsMaterial Science

💡 Fun Facts

  • The cubic centimeter is often used interchangeably with milliliter, where 1 cm³ equals 1 mL.
  • Cubic centimeters are commonly used in the automotive industry to denote engine displacement.
  • The density of a substance can change with temperature and pressure, making the cubic centimeter gram a critical unit in thermodynamics.

📏 Real-World Examples

1 g/cm³
Density of water
13.6 g/cm³
Density of mercury
0.91 g/cm³
Density of olive oil
1.2 g/cm³
Density in pharmaceuticals
2.7 g/cm³
Density of aluminum

🔗 Related Units

Gram (The gram is the base unit of mass in the metric system, and the cubic centimeter gram expresses density in terms of mass per volume.)Cubic Meter (A cubic meter is equivalent to 1,000,000 cubic centimeters, making it useful for larger volume measurements.)Milliliter (1 milliliter is equal to 1 cubic centimeter, often used in liquid measurements.)Kilogram per Cubic Meter (Commonly used for density in larger units, where 1 g/cm³ equals 1000 kg/m³.)
m³/kg

Cubic Meter Kilogram

specificNon-SI

Definition

The cubic meter kilogram is a derived unit of specific volume, defined as the volume occupied by one kilogram of a substance. It is derived from the cubic meter, a unit of volume in the International System of Units (SI), and the kilogram, the base unit of mass. Specific volume expresses how much space a unit mass of a material occupies, which is crucial in various scientific and engineering applications. This unit is particularly relevant in fields such as thermodynamics, fluid mechanics, and material science, where understanding the relationship between mass and volume is essential for calculations and design.

History & Origin

The cubic meter as a unit of volume originated from the metric system established in France during the late 18th century, while the kilogram was defined in 1795. The combination of these two units into cubic meter kilograms provides a practical means to quantify specific volume, often used in engineering and scientific contexts. This derived unit reflects the relationship between mass and volume essential to many physical principles, especially in understanding how substances behave under different conditions.

Etymology: The term 'cubic meter' derives from the Latin 'cubus' meaning cube, and 'meter' from Greek 'metron', meaning measure. 'Kilogram' combines 'kilo' (thousand) and 'gram', which is derived from the Greek 'gramma', meaning small weight.

1795: Kilogram defined as the mass o...1799: Cubic meter introduced as a un...1960: Cubic meter kilogram recognize...

Current Use

Cubic meter kilograms are widely used in engineering, physics, and environmental sciences to describe the specific volume of materials, especially gases and liquids. In industries such as HVAC, chemical engineering, and hydrology, this unit helps in designing equipment and understanding fluid dynamics. Specific volume is critical for calculating buoyancy, flow rates, and thermal properties, making it an essential parameter in many scientific and industrial applications.

EngineeringEnvironmental ScienceChemical ManufacturingHVAC

💡 Fun Facts

  • The specific volume of gases varies significantly with pressure and temperature, unlike liquids and solids which are generally incompressible.
  • Cubic meter kilograms can help in predicting how a substance will behave in different states, such as gas or liquid.
  • Historically, the kilogram was defined by a physical platinum prototype until the 2019 redefinition based on fundamental physical constants.

📏 Real-World Examples

1 m³/kg
Volume of 1 kg of water at 4°C
0.0013 m³/kg
Density of air at sea level
0.789 m³/kg
Specific volume of ethanol
0.000076 m³/kg
Volume of 1 kg of mercury
0.000845 m³/kg
Specific volume of diesel fuel

🔗 Related Units

Cubic Meter (Cubic meters measure volume without reference to mass.)Kilogram (Kilograms define mass, critical for calculating specific volume.)Liter (One cubic meter equals 1000 liters, a common volume measurement.)Gram (One kilogram equals 1000 grams, relevant for specific volume calculations.)

Frequently Asked Questions

How do I convert to ?

To convert to , multiply your value by 1. For example, 10 equals 10 .

What is the formula for to conversion?

The formula is: = × 1. This conversion factor is based on international standards.

Is this to converter accurate?

Yes! MetricConv uses internationally standardized conversion factors from organizations like NIST and ISO. Our calculations support up to 15 decimal places of precision, making it suitable for scientific, engineering, and everyday calculations.

Can I convert back to ?

Absolutely! You can use the swap button (⇄) in the converter above to reverse the conversion direction, or visit our to converter.

Advertisement
AD SPACE - 320x100
BANNER AD - 320x50